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Spatial heterogeneity in African HIV epidemic

• HIV epidemic markedly heterogeneous

• Foci of high HIV incidence and prevalence 
communities (“HOTSPOTS”)

• Hypothesis: GEOGRAPHIC TARGETING of combination 
HIV prevention (CHP) to hotspots is ESSENTIAL

Øsubstantially ameliorate broader epidemic

Øcost-efficient use of resources

figure from Anderson et al., Lancet (2014)



Example: Lake Victoria Fishing Communities

• Lake Victoria fishing sites 
are hotspots

• Since 2014, targeting of 
CHP to fishing communities 
recommended

• Recommendation based on: 

Øhigh incidence

Øassumption that fishing 
sites are major source 
of new infections among 
inland communities



Study objective

• Confirm the assumption that fishing 
communities are a major source of new 
infections among inland communities



Methods overview

• Two ways in which fishing sites can seed new infections 
in inland communities:

Ø transmission from individuals who reside in fishing 
sites

Ømigration to inland communities and subsequent 
spread of HIV

• Used a combination of techniques and data sources.
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Methods overview

• First, surveillance was extended to include 4 largest 
fishing sites in the area

29,115

36 inland communities

 19,799 (99%)Participated

Eligible 

 2,703 (14%)Infected

8,529

 6,083 (99%)
 2,439 (40%)

4 fishing sites

 20,089 Present  6,152

 1,819 (67%)ART-naive  2,059 (84%)



Methods overview

• Second, reconstructed likely HIV-1 transmission networks 
with viral phylogenetic analysis

36 inland communities

 2,703 (14%)Infected

 1,138 (63%)Sequenced

 2,439 (40%)

 1,514 (74%)

4 fishing sites

 1,819 (67%)ART-naive  2,059 (84%)



Methods overview

• Third, households and migration events were geo-coded.

location of 
individuals after 
adjusting for recent 
migration

inland 
communities

fishing 
sites external



Methods overview

• Third, households and migration events were geo-coded.

• This allowed us to interpret phylogenetic transmission networks at 
a resolution below 50km and while accounting for population 
movement

location of 
individuals after 
adjusting for recent 
migration

inland 
communities

fishing 
sites external



Obtaining population-based samples of NGS data is feasible

• 5,142 HIV positive
• 3,878 ART naïve
• 3,758 deep sequenced
• 2,652 with sufficient 

sequence depth (30X)

• Overall sequence coverage 
48.1% assuming individuals 
who did not participate were 
infected in proportion to 
surveyed population −1.0
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Deep sequence phylogenetics enables to infer the direction of transmission

• Gives estimates on who 
might be the source 
case

• Validated against 
epidemiological data, 
found accuracy 83.7%

• Wymant et al. Virus Evolution 2018; 

• Wymant et al. MBE 2017; 

• Ratmann et al. (in prep); 

• Rose et al. on behalf of HPTN052 
#TUPEA001 
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Phyloscans across the genome

Wymant et al. Mol Biol Evo. 2017
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Highly parallelized phylogenetic inference based on NGS data

Ratmann et al. (in preparation)



Phylogenetically reconstructed transmission networks
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• 446 reconstructed transmission networks, 
containing 888 phylogenetic linkages



Phylogenetically reconstructed transmission networks
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• 446 reconstructed transmission networks, 
containing 888 phylogenetic linkages
o 351 linkages had low statistical 

support
o 80 further FF
o 81 further MM

• 376 highly supported male-female 
linkages

• 293 (78%) linkages had one direction of 
transmission highly supported



Direct transmission cannot be proven in population-based sample

• Phyloscanner inference among couples

• Couples were either phylogenetically close 
or distant

• 76% of close couples had strong evidence 
that transmission occurred in one direction



Direct transmission cannot be proven in population-based sample

• Phyloscanner inference on the population-
based sample

• Phylogenetic linkage not clear-cut

• Up to 35% of phylogenetically linked pairs 
in transmission network may not represent 
direct transmission events

• 78% of phylogenetically close pairs had 
strong evidence that transmission 
occurred in one direction



Inferred direction of transmission has low false-discovery rate

• We cross-validated our results against clinical data from which the direction of 
transmission could be inferred.

Male
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N

P
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P
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<400

400−799

800+

years relative to date both partners positive

Sero-discordant 

CD4-discordant CD4 measurement



Inferred direction of transmission has low false-discovery rate

Pairs in population-based sample with clinical evidence for 
transmission in one direction

classified as phylogenetically linked 71

direction consistent with clinical evidence 46 

direction ambiguous 16 

direction inconsistent with clinical evidence 9 

false discovery rate 16.3%



Conclusions Part 1

• Deep sequence phylogenetic analyses can be conducted at the scale of 
population-based surveys with the phyloscanner method.

• Linkage analyses using deep sequence reads have similar limitations compared to 
using consensus sequences. 

• Phyloscanner analysis cannot prove transmission of HIV between two individuals.

• The direction of transmission could be inferred in the large majority of closely 
related pairs, and with small error.



Results



Reconstructed transmission flows

• 293 source-recipient 
pairs reconstructed



• 265/293 (91%) 
were not between 
inland and fishing

• Suggesting largely 
distinct transmission 
networks.

Reconstructed transmission flows



• 7/293 (2.3%) from 
fishing to inland.

• 21/293 (7.2%) from 
inland to fishing.

Reconstructed transmission flows



One more complication

fishing site inland community
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• Substantial differences in participation and sequencing rates



Adjusting for participation and sequencing biases

• Adjusted analysis for 
known biases with 
Bayesian data 
augmentation (Givens 
et al. 1997, Stat Sci)



Fishing sites are net sinks despite being hotspots



Implications for geographic targeting

• Cautious case study: 

• Hotspots are not necessarily the main sources of new infections in 
neighboring low risk areas.

• Populations in hotspots will directly benefit from geographic targeting of 
CHP. 

• Indirect benefits of geographic targeting to neighboring low risk areas 
may be limited.



Going forward

• Mapping may not be enough.

• Comparative assessment of hotspots on their contribution to the broader spread of 
HIV should be a priority.

• Similar analyses could help allocation of limited resources, by prioritizing those 
hotspots for geographic targeting that have a large impact on the epidemic.
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