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How to Interpret a viral phylogeny

a PANGEA webinar
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Using within-host diversity to infer direction of transmission:
Equivalent to inferring ancestral state of virus populations.
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Inferring ancestries in early HIV
diversification and spread:
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Why do we represent relatedness of
viruses as trees?

Why not ‘networks’, ‘clusters’, ‘maps’?



A: because HIV is a biological replicator.

Life Cycle

[ 2 Fusion)

1 6. Assembly
5. Replication

h

.

4. Integration




A single virus

/

Day O

Time

v



Replication

Time

v



Day 2

On average, each
replication cycle takes ~2
days, and the virus acquires
>1 mutation
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In tracing an ancestral
lineage, we only keep track
of viruses, whose
descendants survive to
become part of our sample
of interest.
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Day 6
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What happens if more than one virus has descendants in a sample?
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Tracing an ancestral lineage consists of keeping track of which viruses leave behind
descendants in the sample
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Tracing an ancestral lineage consists of keeping track of which viruses leave behind
descendants in the sample.
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We ignore viruses that don’t leave behind descendants:
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We ignore viruses that don’t leave behind descendants:

%

Day O

Replication

Replication

Replication

Day 2

Time

v

s

Day 4

Replication

Replication

Day 6



The history of the ancestral lineage has splits in time when more than one virus
leaves behind descendants:
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Because ancestral lineages are constructed backwards in time from the present, the
splits are often called ‘coalescences’

Looking backwards from
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We usually infer this process indirectly from a sample:
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This object is the phylogeny of the two sampled viruses.
We have to infer this from data obtained from the two sampled viruses in the boxes.
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A simple phylogeny

The most recent common
ancestor, a.k.a. ‘the root’
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A simple phylogeny

The branches during which the viruses are
busy replicating
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Correctly interpreting trees is not difficult, but requires a bit of practice as
they are a bit visually misleading.
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Q: which are more closely related of the viruses 1, 2 & 37?



Correctly interpreting trees is not difficult, but requires a bit of practice as
they are a bit visually misleading.

—Nbde(1,2,3)
Inferred
ancestor NCd’.(2,3)
of viruses
from A
*
Inferred
ancestor
of viruses — 3%
from B Person B
>
When Time Present
person A
was likely
infected

A: Viruses 2 and 3 share a more recent common ancestor than
either shares with virus 1, and are expected to be more similar



What makes our phylogeny uncertain is that we don’t observe it.

Instead, we infer it from data collected only at the tips
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A simple phylogeny

The branches during which the viruses are
busy replicating (and mutating)
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Replication with mutation
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Look at the genome
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A substitution is a mutation that survives in the ancestral lineage
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A substitution is a mutation that survives in the ancestral lineage
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Substitution rates are typically much lower than mutation rates

(~10 substitutions/year versus ~1 mutation per replication cycle & 150 cycles per year).
* Most mutations are harmful to the virus.

* The virus sometimes gets ‘stuck’ in a non-replicating latent state for years.



Phylogenetic algorithms infer the phylogeny based on molecular models of how the
viruses accumulate substitutions (e.g. the relative rate of A>C versus T>G, etc.).
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An example real phylogeny: “~_

The letters represent an /
inferred ancestral virus for

all the viruses in a patient.

The colors represent patients.

The tips represent a virus.

The number represent the number of
times the same genotype was found.
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Phylogenies can provide information at very different scales
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A tree can be dated if you have enough data to infer rates of substitution
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Example software include BEAST, TreeDater, TreeTime, Least Squares Dating (LSD)



This phylogeny has been rotated for clarity. The past is at the top.
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In practice, inferring phylogenies is full of uncertainty
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This phylogeny has been rotated for clarity. The past is at the top.
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Interesting things may happen to viruses as they replicate:

Transmission: This virus or
infected cell may be
transferred to another
person
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hosting this virus may move
to another location.
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Interesting things may happen to viruses as they replicate:
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A real example of transmission:

At some point along this
branch, the virus in this
lineage likely jumped from
person E into person F.
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A real example of migration
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The final really complicated effect: recombination messes up tree-like structure,
creating a ‘ancestral graph instead’.
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Luckily, HIV is not the only biological replicator that recombines.
Some have been well studied.

Edward

Kate
Middleton




Summary

Phylogenetics provides powerful insights into
dynamics of virus spread at different scales.

Trees are a natural way to describe ancestry
(recombination still challenging).

Ancestral state reconstruction is the key link to
epidemiology.

We have talked a lot about phyloscanner, but
there are many other tools and methods we
should use with PANGEA to obtain insights.



Thank you.

Questions?




