# An introduction to phylodynamics

Matthew Hall PANGEA webinar series 19/2/19

#### Recap on phylogenetics

- Phylogenetics is the study of evolutionary relationships between organisms
  - In our case, the organisms are pathogens
- The principle is that the greater the similarity between organisms, the more closely related they are (and hence the more recently they shared a common ancestor)
- Genetic data is used to construct *phylogenetic trees*, depicting the relationships between the ancestors of our samples
  - Usually DNA or RNA sequence data these days
- Next-generation sequencing technology is making the acquisition of molecular data much faster and cheaper than it was in the past

#### Example phylogeny



#### Recap on phylogenetics

- The branch lengths of many phylogenies represent "genetic distance", a measure of the amount of mutation that have happened
- Many methods and packages are used to create these:
  - Neighbour-joining
  - Maximum parsimony
  - Maximum likelihood
    - Probably the most common
    - PhyML, RAxML and IQ-TREE are popular packages
    - FastTree is a very fast *approximate* ML method
  - Bayesian
    - MrBayes, ExaBayes, RevBayes

#### Phylogenetic uncertainty

- You can never know your phylogeny is "right" without observing the ancestry
- Sometimes many ancestries are about equally likely
- Phylogenetic uncertainty is handled by:
  - Bootstrapping (non-Bayesian methods)
  - Summarising the posterior distribution (Bayesian methods)
- In either case, the analysis produces many trees and a summary tree is annotated by how many of that set agree with it
- Phylogenetic analysis restricted to a single tree is not ideal (but sometimes the only choice)



(Gao et al., Nature, 1999)

#### Dating phylogenetic events

- The phylogeny reconstructs the ancestry of the samples, but on its own it cannot date the events indicated
- If we can date internal nodes, we can estimate when common ancestors existed and when transmissions occurred
- If all our samples were collected over a short period then we require some other information to perform dating
  - Macroorganisms usually breed and mutate too slowly for measurable changes to be observable over a useful timescale
    - Ancient DNA or other archaeological/paleontological findings (for example) have to be used instead
- But pathogen lifespans are short and many (especially RNA viruses) mutate fast and populations observably evolve over short timescales
  - We can use the difference in sampling dates to estimate the rate at which mutations occur

#### Dating phylogenetic events

-D4Mexico84 D4NewCal81 -D4ElSal83 -D4Brazi82 -D4PRico86 -D4EISal94 -D4Tahiti85 D4Tahiti79 -D4Indon77 -D4Indon76 -D4Philip64 -D4Philip84 D4Philip56 -D4Thai78 -D4Thai84 D4SLanka78 -D4Thai63 0.006

Undated



#### Molecular clocks

- Mutation is not a deterministic process
  - Longer phylogeny branches do not automatically put a sample further forwards in time
- Instead, mutation is assumed to occur at a rate per unit of time, according to a *molecular clock*
- The simplest version of the molecular clock is the *strict clock* which assumes that this rate is constant over time for a given sample
- This is usually an oversimplification, so various forms of *relaxed clock* are available that allow rates to vary in different regions of the phylogeny
- Not all datasets display behaviour consistent with a molecular clock at all
  - For example, recombination, convergent evolution or simply lack of sufficient variation can remove the signal
  - The presence of a molecular clock signal can be investigated with e.g. TempEst (Rambaut et al., *Virus Evol*, 2018)

#### Enter phylodynamics

- The term was coined by Grenfell et al., Science, 2004
- The "melding of immunodynamics, epidemiology, and evolutionary biology"
  - The "immunodynamics" bit is for another time
- A dated phylogeny is a (partial) history of a set of pathogen lineages
  - Tips represent samples
  - Internal nodes represent common ancestors of the tips
    - These is often assumed to also represent transmissions between two hosts (which need not be sampled hosts, just ancestors of sampled hosts in the transmission chain)
  - Sample dates are used to calibrate the timings of those ancestors or transmissions according to a molecular clock
- If we have a mathematical model of the process that generates the tree, we can then use sequence data to estimate the parameters of that model and learn about pathogen dynamics

## What kinds of models are assumed to generate the trees?

- Broadly, three classes
  - 1. Population-genetic coalescent models
  - 2. Forwards-time epidemiological models
  - 3. Epidemiological coalescent models
- Other related topics
  - 1. Phylogeography
  - 2. Transmission tree reconstruction

#### Population-genetic coalescent models



(Kühnert et al., Inf Genet Evol, 2011)

- Key principle: in a small population, two individuals are more likely to share an ancestor in the previous generation
- If it takes a long time for two lineages to coalesce, the population must have been large (assuming free mixing)
- We can use the distribution of internal node times (common ancestors) to learn about population size

#### Population-genetic coalescent models

- In the simplest case, the population size is assumed to be constant and that size (or "effective" size) is estimated
- Alternatively, we can assume it obeys a parametric function (e.g. exponential growth or logistic growth)
- Best of all, we can divide the timeline and estimate sizes separately in each period
- Skyline and associated models (skyride, skygrid)

(Ho and Shapiro, *Mol Ecol Resour*, 2011)



#### The structured coalescent

- The standard coalescent assumes that the population is freely-mixing
  - All ancestors are equally likely for any individual in the population
  - This can cause sampling bias issues if some populations are oversampled
- The structured coalescent splits the population into *demes* and allows for ancestry within them and migration between them
  - Individual deme sizes and migration rates may be estimated
  - Skyline models have not yet appeared
  - Works best for small numbers of demes

#### But...

- What population are we actually studying the dynamics of?
  - Pathogens? Then we are completely ignoring the massive population structure imposed by transmission
  - Infections? They don't reproduce in the way population genetics expects
- These are not models of disease transmission. The parameters (e.g. "effective population size") are hard to interpret in epidemiological terms to get incidence, prevalence, R<sub>0</sub>, etc.
- Often a skyline plot is simply examined by eye for temporal and spatial trends without interpreting the actual numbers
- Nevertheless, these models have attractive simplicity and are easy to run

#### Example: emergence of HIV from Kinshasa

Worobey et al., Nature, 2008



#### Forwards-time epidemiological models

- Both coalescent models operate backwards in time
- Another family is forwards-time and behaves more like a conventional epidemiological model
- The sampling process must be modelled here along with transmission
  - Coalescent models deal only with the history of sample, so can avoid this
- Well-known models implemented in a phylodynamics framework:
  - Birth-death (Stadler et al., *Mol Biol Evol*, 2011)
  - Birth-death with time-varying parameters (Stadler et al., *PNAS*, 2013)
  - Birth-death with population structure (Kühnert et al., *Mol Biol Evol*, 2016)
  - SIS (Leventhal et al., *Mol Biol Evol*, 2014)
  - SIR (Kühnert et al., J R Soc Interface, 2014)









Year

#### The epidemiological structured coalescent

- Coalescent models reformulated to mimic epidemic models
- The "compartments" of a classic epidemic model become the "demes" in the structured coalescent
  - Not necessarily geographical
- As these are backwards-time models, no need to model sampling
- Packages
  - phydyn (Volz and Siveroni, PLOS Comput Biol, 2018)
  - MASCOT (Müller et al., Bioinformatics, 2018)

### Example: HIV transmission in early infection, Detroit MSM

Volz et al., PLOS Med, 2013





### Phylogeography

- Phylogeography infers the movement of ancestral lineages through space and time using the phylogeny
  - Related is *phyloanatomy*, inferring movement between compartments of a host organism
- The structured coalescent is one approach to phylogeography, but it struggles with large numbers of demes, and also assumes a finite number of discrete locations
- The "mugration" model (e.g. Lemey et al., *PLOS Comput Biol*, 2009) treats location like a nucleotide and can handle many, many states
  - Caution: sampling bias
- A continuous model also exists (Lemey et al., *Mol Biol Evol*, 2010), if samples with exact latitude and longitude and available
- Key difference: the diffusion process is carried along the tree branches (like mutations) but is not assumed to generate it
  - Lineage splits are not part of the model

#### Example: HIV in the DRC

#### Faria et al., Science, 2014





#### Example: predictors of influenza H3N2 spread

- Phylogeography models can also be used to determine significant predictors of transitions between locations
- Lemey et al., *PLOS Pathogens*, 2014.



#### Example: raccoon rabies in North America

(Lemey et al., Mol Biol Evol, 2010)



#### Transmission tree reconstruction

- The models discussed up until now are used to infer general properties of the epidemic (transmission rates, reproductive numbers, etc.)
  - Coalescent models assume sampling is sparse
  - Forwards-time models have an explicit sampling probability parameter
  - Neither are fundamentally concerned with exactly who infected who
- Transmission tree reconstruction (or source attribution) methods are concerned with exactly how the samples relate to each other in the transmission chain, rather than the properties of the entire epidemic
  - Many methods assume complete sampling
  - Not all are phylogenetic or phylodynamic
  - TransPhylo (Didelot et al., *Mol Biol Evol*, 2014 & 2017), BEASTLIER (Hall et al., *PLOS Comput Biol*, 2015), phybreak (Klinkenberg et al., *PLOS Comput Biol*, 2017), structured coalsecent source attribution (Volz and Frost, *PLOS Comput Biol*, 2013), SCOTTI (de Maio et al., *PLOS Comput Biol*, 2016)
  - Phyloscanner?







### Example: H7N7 avian influenza, Netherlands, 2003



(Hall et al., PLOS Comput Biol, 2015)





#### BEAST

- Bayesian Evolutionary Analysis (by) Sampling Trees
- The current gold standard one-step package(s)
  - Deals naturally with issues surrounding phylogenetic uncertainty
  - ...but struggles with datasets beyond a few hundred sequences, especially for more complex models
- BEAST analyses are usually presented as taking sequences as input (one-step), but it can also use a fixed tree (two- or three-step)



#### The octopus and the mouse

• Confusingly, there are two BEASTs which are independent development projects. They can be used interchangeably for many, but not all analyses



- Suchard et al., Virus Evol, 2018 (most recent citation)
- Arguably more user-friendly
- Cutting-edge for populationgenetic coalescent models and phylogeography



east2

- Bayesian evolutionary analysis by sampling trees
- Bouckaert et al., PLOS Comput *Biol*, 2014
- More flexible, modular structure
- Cutting-edge for epidemiological models (coalescent and forwards-time)

#### Two-step analysis

- If a standard BEAST analysis will run, but your phylodynamic model will not (or is not in BEAST):
  - 1. Build the dated phylogeny or phylogenies with BEAST
  - 2. Run a separate algorithm for phylodynamic inference
    - Sometimes this too is BEAST!



#### Beyond the BEAST limits

- If your dataset is so large that BEAST will not converge in reasonable time, you need the threestep process
  - 1. Make a phylogeny with branch lengths in genetic units using a standard package (usually maximum likelihood)
  - 2. Use a separate package to infer a molecular clock and fit the tree to a timeline
  - 3. Use that dated phylogeny to fit the phylodynamic model
- Now several options for step 2:
  - Least-squares dating (LSD) (C++; To et al., Syst Biol, 2016)
  - node.dating (R; Jones and Poon, *Bioinformatics*, 2017)
  - TreeTime (Python; Sagulenko et al., Virus Evol, 2017)
  - treedater (R; Volz and Frost, Virus Evol, 2017)
  - BactDating (R; Didelot et al., Nucleic Acids Res, 2018)
- Limited scope for dealing with phylogenetic uncertainty



#### Summary

- Phylodynamics marries evolutionary biology and mathematical modelling of infectious disease
- Phylogenies with branch lengths in calendar time are almost always used
- The phylogeny is taken to be a history of an epidemic, and by fitting models to that history, we recover important parameters of that epidemic
- Phylogeography and source attribution are related areas
- Bayesian methods are most common
  - One-step BEAST for datasets up to a few hundred sequences and established models
  - Two-step procedures for more experimental models
  - Three-step procedures for large datasets