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Recap on phylogenetics

* Phylogenetics is the study of evolutionary relationships between
organisms
* In our case, the organisms are pathogens

* The principle is that the greater the similarity between organisms, the
more closely related they are (and hence the more recently they
shared a common ancestor)

* Genetic data is used to construct phylogenetic trees, depicting the
relationships between the ancestors of our samples

e Usually DNA or RNA sequence data these days

* Next-generation sequencing technology is making the acquisition of
molecular data much faster and cheaper than it was in the past
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Recap on phylogenetics

* The branch lengths of many phylogenies represent “genetic distance”,
a measure of the amount of mutation that have happened

* Many methods and packages are used to create these:
* Neighbour-joining
* Maximum parsimony

* Maximum likelihood
* Probably the most common
* PhyML, RAXML and IQ-TREE are popular packages
* FastTree is a very fast approximate ML method
* Bayesian
* MrBayes, ExaBayes, RevBayes



Phylogenetic uncertainty
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(Gao et al., Nature, 1999)



Dating phylogenetic events

* The phylogeny reconstructs the ancestry of the samples, but on its own it
cannot date the events indicated

* If we can date internal nodes, we can estimate when common ancestors
existed and when transmissions occurred

e |f all our samples were collected over a short period then we require some
other information to perform dating

. I\/Iacroor%anisms usually breed and mutate too slowly for measurable changes to be
observable over a useful timescale

. Ancier(wjt DNA or other archaeological/paleontological findings (for example) have to be used
instea

* But pathogen lifespans are short and many (especially RNA viruses) mutate
fast and populations observably evolve over short timescales
* We can use the difference in sampling dates to estimate the rate at which mutations occur
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Dating phylogenetic events
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Molecular clocks

* Mutation is not a deterministic process
* Longer phylogeny branches do not automatically put a sample further forwards in time

* Instead, mutation is assumed to occur at a rate per unit of time, according to a
molecular clock

* The simplest version of the molecular clock is the strict clock which assumes that
this rate is constant over time for a given sample

* This is usually an oversimplification, so various forms of relaxed clock are
available that allow rates to vary in different regions of the phylogeny

* Not all datasets display behaviour consistent with a molecular clock at all

 For example, recombination, convergent evolution or simply lack of sufficient variation can
remove the signal

* The presence of a molecular clock signal can be investigated with e.g. TempEst (Rambaut et
al., Virus Evol, 2018)



Enter phylodynamics

* The term was coined by Grenfell et al., Science, 2004

* The “melding of immunodynamics, epidemiology, and evolutionary
biology”

* The “immunodynamics” bit is for another time
» A dated phylogeny is a (partial) history of a set of pathogen lineages

* Tips represent samples
* Internal nodes represent common ancestors of the tips

* These is often assumed to also represent transmissions between two hosts
be sampled hosts, just ancestors of sampled hosts in the transmission chain

* Sample dates are used to calibrate the timings of those ancestors or transmissions
according to a molecular clock

* If we have a mathematical model of the process that generates the tree,
we can then use sequence data to estimate the parameters of that model

and learn about pathogen dynamics

SWhich need not



What kinds of models are assumed to
generate the trees?

* Broadly, three classes
1. Population-genetic coalescent models
2. Forwards-time epidemiological models
3. Epidemiological coalescent models

e Other related topics
1. Phylogeography
2. Transmission tree reconstruction



Population-genetic coalescent models
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(KGhnert et al., Inf Genet Evol, 2011)

Key principle: in a small
population, two
Individuals are more
likely to share an
ancestor in the previous
generation

If it takes a long time for
two lineages to coalesce,
the population must have
been large (assuming free
mixing)

We can use the
distribution of internal
node times (common

ancestors) to learn about
population size



Population-genetic coalescent models

(Ho and Shapiro, Mol Ecol Resour, 2011)

(a) ®

* In the simplest case, the population size is O
assumed to be constant and that size (or :3 I ¢
“effective” size) is estimated G

 Alternatively, we can assume it obeys a
parametric function (e.g. exponential growth ... .. ...

. .. A R CRE CRR Y i
or logistic growth) TR R R

e Best of all, we can divide the timeline and
estimate sizes separately in each period

 Skyline and associated models (skyride,
skygrid)

Population size

Time before present



The structured coalescent

* The standard coalescent assumes that the population is freely-mixing
 All ancestors are equally likely for any individual in the population
* This can cause sampling bias issues if some populations are oversampled

* The structured coalescent splits the population into demes and allows
for ancestry within them and migration between them
* Individual deme sizes and migration rates may be estimated
* Skyline models have not yet appeared
* Works best for small numbers of demes



But...

* What population are we actually studying the dynamics of?

* Pathogens? Then we are completely ignoring the massive population
structure imposed by transmission

* Infections? They don’t reproduce in the way population genetics expects

* These are not models of disease transmission. The parameters (e.g.
“effective population size”) are hard to interpret in epidemiological
terms to get incidence, prevalence, R, etc.

* Often a skyline plot is simply examined by eye for temporal and
spatial trends without interpreting the actual numbers

* Nevertheless, these models have attractive simplicity and are easy to
run



Example: emergence of HIV from Kinshasa

Worobey et al., Nature, 2008
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Forwards-time epidemiological models

* Both coalescent models operate backwards

in ti Birth
In time ‘

* Another family is forwards-time and behaves

(infection)

more like a conventional epidemiological
model

* The sampling process must be modelled here

along with transmission
* Coalescent models deal only with the history of Susceptible )
sample, so can avoid this

* Well-known models implemented in a
phylodynamics framework:

* Birth-death (Stadler et al., Mol Biol Evol, 2011)

* Birth-death with time-varying parameters
(Stadler et al., PNAS, 2013) Susceptible B4 Infected

* Birth-death with population structure (Kiihnert
et al., Mol Biol Evol, 2016)
* SIS (Leventhal et al., Mol Biol Evol, 2014) _’

* SIR (Kiihnert et al., J R Soc Interface, 2014)



Examples: HIV in Europe

Stadler et al., PNAS, 2013 (UK data) Leventhal et al., Mol Biol Evol, 2014 (Swiss data)
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The epidemiological structured coalescent

* Coalescent models reformulated to mimic epidemic models

* The “compartments” of a classic epidemic model become the
“demes” in the structured coalescent

* Not necessarily geographical
* As these are backwards-time models, no need to model sampling

* Packages

* phydyn (Volz and Siveroni, PLOS Comput Biol, 2018)
 MASCOT (Mduller et al., Bioinformatics, 2018)



Example: HIV transmission in early infection,

Detroit MSM

Volz et al., PLOS Med, 2013
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Phylogeography

* Phylogeography infers the movement of ancestral lineages through space and
time using the phylogeny
* Related is phyloanatomy, inferring movement between compartments of a host organism

* The structured coalescent is one approach to phylogeograph\é, but it struggles
?/vith large numbers of demes, and also assumes a finite number of discrete
ocations

* The “mugration” model (e.g. Lemey et al., PLOS Comput Biol, 2009) treats
location like a nucleotide and can handle many, many states

e Caution: sampling bias
* A continuous model also exists (Lemey et al., Mol Biol Evol, 2010), if samples with
exact latitude and longitude and available

* Key difference: the diffusion process is carried along the tree branches (like
mutations) but is not assumed to generate it

* Lineage splits are not part of the model



Example: HIV in the DRC

Faria et al., Science, 2014
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Example: predictors of influenza H3N2 spread

Air communities (n=14) Geographic locations (n=15) Geographic locations (n=26)

predictors inclusion probability (E(3))  In coefficient (BI15=1) inclusion probability (E(3))  In coefficient (BI&=1) inclusion probability (E(3))  In coefficient (BI&=1)
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Example: raccoon rabies in North America

(Lemey et al., Mol Biol Evol, 2010)




A o 1
Transmission tree reconstruction _U —

* The models discussed up until now are used to infer
general properties of the epidemic (transmission rates,
reproductive numbers, etc.)

* Coalescent models assume sampling is sparse | : : : : ,

* Forwards-time models have an explicit sampling probability 2005 2006 2007 2008 2009 2010
parameter

* Neither are fundamentally concerned with exactly who
infected who

7l

* Transmission tree reconstruction (or source attribution)
methods are concerned with exactly how the samples
relate to each other in the transmission chain, rather
than the properties of the entire epidemic

* Many methods assume complete sampling
* Not all are phylogenetic or phylodynamic

* TransPhylo (Didelot et al., Mol Biol Evol, 2014 & 2017),
BEASTLIER (Hall et al., PLOS Comput Biol, 2015), phybreak
(Klir|1kenberg et al,, PLOBS‘ Com/:z\t;t IBio/,O%lqﬂ), s,’grLl;)c;tJCfed i | T T T |
coalsecent source attribution (Volz and Frost, omput
Biol, 2013), SCOTTI (de Maio et al., PLOS Comput Biol, 2016) 2005 2006 2007 2008 2009 2010

* Phyloscanner? (Didelot et al., Mol Biol Evol, 2017)




Example: H7/N7 avian influenza, Netherlands,
2003
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(Hall et al., PLOS Comput Biol, 2015)
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BEAST

e Bayesian Evolutionary Analysis (by)
Sampling Trees

* The current gold standard one-step
package(s)
* Deals naturally with issues
surrounding phylogenetic uncertainty

* ...but struggles with datasets beyond
a few hundred sequences, especially
for more complex models

 BEAST analyses are usually
presented as taking sequences as
input (one-step), but it can also use
a fixed tree (two- or three-step)

Sampling dates Other epi data
BEAST

¥ $

Dated phylogenies Phylodynamic
parameters



The octopus and the mouse

* Confusingly, there are two BEASTs which are independent development projects.
They can be used interchangeably for many, but not all analyses

SEAS |

e Suchard et al., Virus Evol, 2018
(most recent citation)

* Arguably more user-friendly

 Cutting-edge for population-
genetic coalescent models and
phylogeography

Beast2

Bayesian evolutionary analysis by sampling trees

* Bouckaert et al., PLOS Comput
Biol, 2014

* More flexible, modular structure

 Cutting-edge for epidemiological
models (coalescent and
forwards-time)



Two-step analysis

* If a standard BEAST analysis will
run, but your phylodynamic
model will not (or is not in
BEAST):

1. Build the dated phylogeny or
phylogenies with BEAST

2. Run a separate algorithm for
phylodynamic inference

* Sometimes this too is BEAST!

Sequences Sampling dates

A 4

BEAST

Other epi data

Dated phylogeny

algorithm #2

Phylodynamic parameters

e
¥
]



Beyond the BEAST limits

* If your dataset is so large that BEAST will not
converge in reasonable time, you need the three-
step process

1. Make a phylogeny with branch lengths in genetic units
using a standard package (usually maximum likelihood)

2. Use a separate package to infer a molecular clock and fit
the tree to a timeline

3. Use that dated phylogeny to fit the phylodynamic model

* Now several options for step 2:
* Least-squares dating (LSD) (C++; To et al., Syst Biol, 2016)
* node.dating (R; Jones and Poon, Bioinformatics, 2017)
* TreeTime (Python; Sagulenko et al., Virus Evol, 2017)
* treedater (R; Volz and Frost, Virus Evol, 2017)
* BactDating (R; Didelot et al., Nucleic Acids Res, 2018)

* Limited scope for dealing with phylogenetic
uncertainty

Sequences

Sampling
dates

g

Undated
phylogeny

Dated
phylogeny

¥




Summary

* Phylodynamics marries evolutionary biology and mathematical modelling
of infectious disease

* Phylogenies with branch lengths in calendar time are almost always used

* The phylogeny is taken to be a history of an epidemic, and by fitting models
to that history, we recover important parameters of that epidemic

* Phylogeography and source attribution are related areas

e Bayesian methods are most common
* One-step BEAST for datasets up to a few hundred sequences and established models
* Two-step procedures for more experimental models
* Three-step procedures for large datasets



