Using NGS data to identify HIV drug resistance mutations

webinar: David Bonsall

PopART Phylogenetics

Primary outcome

- Relative (reduction) in incidence between arm A and arm C communities observed between PC 12 and PC 36

year

Difference between A and B ?

Raw Incidence Overall

Triplet	A	B	C
1	2^{*}	1^{*}	$3^{* *}$
2	5^{*}	$6^{* *}$	4^{*}

5	14	13	15	Metro
7	19	20	21	Winelands

* Copperbelt, ** Central
- Drug Resistance in PopART
- What is the prevalence of drug resistance within PopART at baseline?
- To what extent did drug resistance limit effectiveness of treatment-based prevention of new infections?
- Did drug resistance contribute to heterogeneity observed in the trials primary outcome?
- (How did PopART impact incidence of drug resistant infections?)

HIV Drug Resistance - An evolving problem

Southern Africa

Studies: 60
Patients: 11855
p value for association: <0.0001
Southern Africa

Studies: 61
Patients: 11855
p value for association: 0.0154
Odds ratio per year: 1 -11 (95% Cl1.02-1.21)

Western and central Africa

Studies: 51
Patients: 4924
p value for association: 0-0017
Western and central Africa

Studies: 56
Patients: 4924
p value for association: 0.2898
Odds ratio per year: 1.05 (95% (I 0.96-1.15)

Phylogenetics of drug resistance: Populations

POPART (Zambia - mostly clade C)

BEEHIVE (Europe - mostly clade B)

Susceptible
Potential Low-Level Resistance
Low-Level Resistance
Intermediate Resistance
High-Level Resistance

Beyond PopART...

- Refining the drug resistance forecast.
- Rates of transmission
- Rates of reversion
- Rates de novo selection of DR
- Role of low frequency drug resistance mutations
- Importance of mutational load
- Role multi-drug combinations
- What does DR mean for TasP programmes?
- Is there a clinical role for drug resistance testing in Africa?
- Do we need it? Can we predict drug resistance without a test?
- How do we use reistance information? Better empiric therapy vs. targeted therapy?

Subtype/CRF

- 02_AG

10_CD

- 11_cpx
- 49_cpx
- A 1
- $A 2$
- B
- C
- D
- G
- J
- K

NA

Are strains of HIV structured by community?

Are there strains of HIV structured by community?

Are strains of HIV structured by community?

Library prep: SMARTer (TakaraBio)

Sequencing
Illumina

Nucleic Extraction
EasyMag (Biomerieux)

Enrichment

Custom oligonucleotides
designed to capture the full HIV diversity

Measurement:

Viral load

Sequencing design:

Analysis
design:

Genotype

Unbiased probe capture

Accurate mapping, Consensus calling

Transmission network

Minimal PCR, Fragment size selection

Ancestral host-state reconstruction

Drug resistance levels

Quantitative sequencing, Optimisation for low viral loads

Haplotype calling, HIVdb

One Step RT-PCR
Producing 4 overlapping amplicons
Overlapping PCR amplicons

Can't deduplicate

Fragmentation Adapter ligation

Barcoding

Astrid Gall et al. 2012. J Clin Micro

SMARTer

- Faster (4 hours vs 2 days)
- Fewer steps pre-PCR
- Efficient additional of sequencing adapter
- Greater yields of unique sequences
- Fewer PCR cycles
- Greater library complexity
- Longer inserts

Rapid HIV drug resistance typing for quantitative NGS data.

- Codon aware alignment of paired-end short read data.
- Matching clade reference mapping (clade C to clade C)
- Derives mutation coordinates relative to HXB2
- Scores resistance according to HIVdb (Stanford)
...Or a custom database.
- Quantitative summary of read data filtering on...
- Absolute read count threshold
- \% prevalence threshold
- Reports linked mutations
- FAST
- Laptop: 6000 reads in 2 mins.
- HPC: All of PopART HC data (34 million reads) in 10 hours
- FLEXIBLE (experimental)
- Whole genome characterization possible
- (Co-receptor predictions, CTL escape, envelope glycosylation)
drmSEQ - Features
- Sequencing
- Base-calling ...SHIVER trims low quality bases and primers
- Read length ...veSEQ optimized to maximize long fragments
- Contamination ...phyloscanner
- APOBEC hypermutations ...drmSEQ
- Bioinformatics
- Reference mapping ...matched clade mapping, alignment score filtering
- Pol vs. WGS ...whole genome with drmSEQ (requires additional database)
- Indel management ...handled by drmSEQ
- HIV variant calling... calls variants from reads NOT consensus sequences
- Database + Algorithm ...HIVdb (Stanford) - Flexible, can be changed
- Minority variants...after cleaning, can apply minimum thresholds for coverage and \% frequency
- Haplotyping...possible within limits of read length (250-500 nt)

Impact of DR on viral suppression

Low frequency drug-resistant mutations Do they matter?

No association with treatment failure

O Peuchant et al., AIDS 2008;
M Balduin et al., JCV 2009; MR Jakobsen et al., (CID 2010; KJ Metzner et al., JCV 2011; JD Stekler et al., PLoS One 2011;
P Messiaen et al., Virology 2012; V Bansode et al., BMC Infect Dis 2013;
VF Boltz et al., JID 2014;
S Mohamed et al., JMV 2014;
KJ Metzner et al., AIDS 2014;

U Neogi et al., AIDS 2014
F Nicot et al., JCV 2015;
A Zoufaly et al., JAC 2015;
M Casadella et al., AIDS 2015;
DP Porter et al., Viruses 2015;
V Van Eygen et al., JMV 2016;
ML Mzingwane et al., Virol J 2016;
DS Clutter et al., JID 2017;
O Epaulard et al., JCV 2017;
S Raymond et al., CID 2018;

Association with treatment failure

JA Johnson et al., PLoS Med 2008;
KJ Metzner et al., CID 2009;
BB Simen et al.,JID 2009;
AM Geretti et al., JAIDS 2009;
R Paredes et al., JID 2010;
DD Goodman et al., AIDS 2011;
JZ Li et al., JAMA 2011;
M Pingen et al., HIV Med 2012;
A Cozzi-Lepri et al., JAC 2015;
S Avila-Rios et al., Lancet HIV 2016;
SC Inzaule et al., JAC 2018

Credit to Karin Metzner for literature search

Mutational load may be more important (few studies)

$$
\text { 1\% K103N, VL } 1000=10 \text { mutants per ml }
$$

$$
1 \% \text { K103N, VL 10^5 = } 1000 \text { mutants per ml }
$$

Mutational load + Increased potency from mutation combinations
(no studies?)

Journal of Antimicrobial Chemotherapy

Low-frequency drug-resistant HIV-1 and risk of virological failure to first-line NNRTI-based ART: a multicohort European case-control study using centralized ultrasensitive 454 pyrosequencing

Alessandro Cozzi-Lepri ${ }^{1} \dagger$, Marc Noguera-Julian ${ }^{2} \dagger$, Francesca Di Giallonardo ${ }^{3}$, Rob Schuurman ${ }^{4}$, Martin Däumer ${ }^{5}$, Sue Aitken ${ }^{4}$, Francesca Ceccherini-Silberstein ${ }^{6}$, Antonella D’Arminio Monforte ${ }^{7}$, Anna Maria Geretti ${ }^{8}$, Clare L. Booth ${ }^{9}$, Rolf Kaiser ${ }^{10}$, Claudia Michalik ${ }^{11,12}$, Klaus Jansen ${ }^{11}$, Bernard Masquelier ${ }^{13}$, Pantxika Bellecave ${ }^{13}$, Roger D. Kouyos ${ }^{3}$, Erika Castro ${ }^{14}$, Hansjakob Furrer ${ }^{15}$, Anna Schultze ${ }^{1}$, Huldrych F. Günthard ${ }^{3}$, Francoise Brun-Vezinet ${ }^{16}$, Roger Paredes ${ }^{2} \dagger$ and Karin J. Metzner ${ }^{3 *} \dagger$ on behalf of the CHAIN Minority HIV-1 Variants Working Group \ddagger

Table 2. Factors associated with virological failure

Interpreting Drug Resistance from NGS data
Sanger
consensus

Interpreting Drug Resistance from NGS data
Sanger \downarrow consensus

HIV Prevention

Transmission of Drug resistance (Work in Progress)

HIV drug resistance can be acquired and transmitted

*Self reporting may not be accurate

Ancestral State Reconstruction (Discrete state $=$ NNRTI Resistance)

Phylogenetic networks

Identify linked partnerships

...for all individuals....

Summary

The Oxford HIV Sequencing Pipeline:

1 technician:
384 samples per week Consumable cost: \$40-\$45/sample

What are the potential benefits of ROUTINE implementation of quantitative HIV sequencing in LMIC:
Drug resistance?
Resource provisioning?
Reaching the undiagnosed and untreated?
Economics?
The 90:90:90 goals and "the missing 27\%"

Challenges:

Setting-up in LMIC: Portable (low-throughput, fast) vs. Centralised (Highthroughput, slow) Who? Indiscriminate vs targeted sampling. Communities vs. individuals
Efficient and ethical and infrastructures for data handling

Acknowledgement

Christophe Fraser
Tanya Golubchik
Matthew Hall
Chris Wymant
Lucie Abeler-Dorner
Mariateresa de Cesare
Rafael Sauter
Will Probert

The Beehive investigators
The PopART investigators (HPTN 071)
The PopART Phylogenetics investigators (HPTN 071-2)
PANGEA Consortium members
Africa Health Research Institute
Deenan Pillay
Steven Kemp
Ravindra Gupta
Anne Derache

Zambart Project

Barry Kosloff
Mohammed Limbada
Ab Schaap
Helen Ayles
Wellcome Centre for Human Genetics
Rory Bowden
George MacIntyre-Cockett
Peter Medawar Building for Pathogen
Research
Ellie Barnes
Paul Klenerman
Anthony Brown
Azim Ansari

Government Agencies:

USAID

> CITY OF CAPE TOWN
> ISIXEKO SASEKAPA
> STAD KAAPSTAD

FROM THE AMERICAN PEOPLE

FhatidididRz
For ahealthy Zambia for Impact Evaluation

BILL ${ }^{〔}$ MELINDA
GATES foundation
U.S. Department of Health and Human Services National Instirutes of healm

Summary

The Oxford HIV Sequencing Pipeline:

High resolution molecular epidemiology
Viral load
Drug resistance

1 technician:
384 samples per week Consumable cost: \$40-\$45/sample

What are the potential benefits of ROUTINE implementation of quantitative HIV sequencing in LMIC:
Drug resistance?
Resource provisioning?
Reaching the undiagnosed and untreated?
Economics?
The 90:90:90 goals and "the missing 27\%"

Challenges:

Setting-up in LMIC: Portable (low-throughput, fast) vs. Centralised (Highthroughput, slow) Who? Indiscriminate vs targeted sampling. Communities vs. individuals
Efficient and ethical infrastructures for data handling

Acknowledgement

Christophe Fraser
Tanya Golubchik
Matthew Hall
Chris Wymant
Lucie Abeler-Dorner
Mariateresa de Cesare
Will Probert
Rafael Sauter

The Beehive investigators
The PopART investigators (HPTN 071)
The PopART Phylogenetics investigators (HPTN 071-2)
PANGEA Consortium members
Africa Health Research Institute
Deenan Pillay
Steven Kemp
Ravindra Gupta
Anne Derache

Zambart Project
Barry Kosloff
Mohammed Limbada
Ab Schaap
Helen Ayles
Wellcome Centre for Human Genetics
Rory Bowden
George MacIntyre-Cockett
Peter Medawar Building for Pathogen
Research
Ellie Barnes
Paul Klenerman
Anthony Brown
Azim Ansari

Government Agencies:

USAID

> CITY OF CAPE TOWN
> ISIXEKO SASEKAPA
> STAD KAAPSTAD

FROM THE AMERICAN PEOPLE

FhatidididRz
For ahealthy Zambia for Impact Evaluation

BILL ${ }^{〔}$ MELINDA
GATES foundation
U.S. Department of Health and Human Services National Instirutes of healm

