Using NGS data to identify HIV drug resistance mutations

webinar: David Bonsall

PopART Phylogenetics

USAID

PopART Phylogenetics
...a substudy of HPTN-071
...involving communities in Zambia
Using viral genetic data to understand...
Demographic correlates of transmission
The role of acute infection in transmission
Impact of migration
Acquisition and transmission of drug resistance

Transmission networking by phylogenetics

0.58/0.75

Consensus sequencing

Deep sequencing

Primary outcome

 Relative (reduction) in incidence between arm A and arm C communities observed between PC 12 and PC 36

Difference between A and B?

* Copperbelt, ** Central

- Drug Resistance in PopART
 - What is the prevalence of drug resistance within PopART at baseline?
 - To what extent did drug resistance limit effectiveness of treatment-based prevention of new infections?
 - Did drug resistance contribute to heterogeneity observed in the trials primary outcome?
 - (How did PopART impact incidence of drug resistant infections?)

HIV Drug Resistance – An evolving problem

Gupta RK, Lancet Infect Dis. 2018

Phylogenetics of drug resistance: Populations

Beyond PopART...

- Refining the drug resistance forecast.
 - Rates of transmission
 - Rates of reversion
 - Rates de novo selection of DR
 - Role of low frequency drug resistance mutations
 - Importance of mutational load
 - Role multi-drug combinations
- What does DR mean for TasP programmes?
- Is there a clinical role for drug resistance testing in Africa?
 - Do we need it? Can we predict drug resistance without a test?
- How do we use reistance information? Better empiric therapy vs. targeted therapy?

Are strains of HIV structured by community?

Are there strains of HIV structured by community?

Are strains of HIV structured by community?

Measurement:

Sequencing

design:

Analysis

design:

Viral load

Quantitative standards

PCR duplicate removal

Unbiased probe capture

Accurate mapping,

Consensus calling

Transmission network

Minimal PCR, Fragment size selection

Ancestral host-state reconstruction

Drug resistance levels

Quantitative sequencing, Optimisation for low viral loads

> Haplotype calling, HIVdb

SMARTer

- Faster (4 hours vs 2 days) ٠
- Fewer steps pre-PCR ٠
- Efficient additional of sequencing adapter ٠
- Greater yields of unique sequences ٠
- Fewer PCR cycles •
- Greater library complexity ٠
- Longer inserts ٠

drmSEQ

Rapid HIV drug resistance typing for quantitative NGS data.

- Codon aware alignment of paired-end short read data.
- Matching clade reference mapping (clade C to clade C)
- Derives mutation coordinates relative to HXB2
- Scores resistance according to HIVdb (Stanford)
 - ... or a custom database.
- Quantitative summary of read data filtering on ...
 - Absolute read count threshold
 - % prevalence threshold
- Reports linked mutations
- FAST
- Laptop: 6000 reads in 2 mins.
- HPC: All of PopART HC data (34 million reads) in 10 hours

- FLEXIBLE (experimental)

- Whole genome characterization possible
- (Co-receptor predictions, CTL escape, envelope glycosylation)

drmSEQ – Features

- Sequencing
 - Base-calling ... SHIVER trims low quality bases and primers
 - Read length ...veSEQ optimized to maximize long fragments
 - Contamination ... phyloscanner
 - APOBEC hypermutations ...drmSEQ
- Bioinformatics
 - Reference mapping ...matched clade mapping, alignment score filtering
 - Pol vs. WGS ...whole genome with drmSEQ (requires additional database)
 - Indel management ...handled by drmSEQ
- HIV variant calling... calls variants from reads NOT consensus sequences
- Database + Algorithm ... HIVdb (Stanford) Flexible, can be changed
- Minority variants...after cleaning, can apply minimum thresholds for coverage and % frequency
- Haplotyping...possible within limits of read length (250 500 nt)

	<u>Input 1:</u> Reads (fasta)	<u>Step 1</u> Local alignment of reads to subtype matched consensus	Output 1 Per Read Resistance Score
	>Read1 ATCGACTACGCACACTACGACTAC >Read2 AGCATCAGCATCAGCATCAGAACAAC >Read(n) <u>Input 2:</u> Codon-aware multiple alignment	(DNA->Protein) <u>Step 2</u> Codon positioning (relative to HXB2	readIDDORETVETRNVPRVPABCAZTD4TDDIFTCMutationRead100000000000Read22424342440rtL741+rtV75S+rtL100VRead32424342440rtL741+rtV75S+rtL100VRead424342440rtL741+rtV75S+rtL100VRead53430000016190ARead63430000016190ARead73430000016190ARead80000444rtG190A
Reads Clade C Clade B Clade D Clade F HXB2 Ref	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Step 3a Read annotation with DRMs Step 3b Quantification of mutations and combinations of mutations	Output 2 Resistance summary reads readID DOR EFV ETR NVP RPV ABC AZT D4T DD1 FTC Summary 3 4 3 4 3 4 3 4 2 4 4 0
	Input 3: HIVdb (Stanford) Drug Rule Gene DOR EFV ETR NVP RPV x A98G RT 15 10 30 15 L100I RT 15 60 30 60 60 L100V RT 10 30 10 30 15 K101E RT 15 15 30 45 K101H RT 0 10 10 15 10	<u>Step 4</u> Summarise overall resistance (apply quantification filters: eg 10%, minimum coverage of 2) <u>Step 5 (optional)</u> Integration with Phyloscanner	MutationsrtG190DRM343 %rtK65RDRM114 %(Threshold not met)rtL74IDRM343 %rtV75SDRM343 %rtL100VDRM343 %No MutationDRM114 %CombinationsrtL74I+rtV75S+rtL100V3 -

Impact of DR on viral suppression

Low frequency drug-resistant mutations Do they matter?

No association with treatment failure

O Peuchant *et al.*, AIDS 2008; M Balduin *et al.*, JCV 2009; MR Jakobsen *et al.*, (CID 2010; KJ Metzner *et al.*, JCV 2011; JD Stekler *et al.*, PLoS One 2011; P Messiaen *et al.*, Virology 2012; V Bansode *et al.*, BMC Infect Dis 2013; VF Boltz *et al.*, JID 2014; S Mohamed *et al.*, JMV 2014; KJ Metzner *et al.*, AIDS 2014; U Neogi et al., AIDS 2014; F Nicot et al., JCV 2015; A Zoufaly et al., JAC 2015; M Casadella et al., AIDS 2015; DP Porter et al., Viruses 2015; V Van Eygen et al., JMV 2016; ML Mzingwane et al., Virol J 2016; DS Clutter et al., JID 2017; O Epaulard et al., JCV 2017; S Raymond et al., CID 2018;

Association with treatment failure

JA Johnson *et al.*, PLoS Med 2008; KJ Metzner *et al.*, CID 2009; BB Simen *et al.*, JID 2009; AM Geretti *et al.*, JAIDS 2009; R Paredes *et al.*, JID 2010; DD Goodman *et al.*, AIDS 2011; JZ Li *et al.*, JAMA 2011; M Pingen *et al.*, HIV Med 2012; A Cozzi-Lepri *et al.*, JAC 2015; S Avila-Rios *et al.*, Lancet HIV 2016; SC Inzaule *et al.*, JAC 2018

Credit to Karin Metzner for literature search

Mutational load may be more important (few studies) 1% K103N, VL 1000 = 10 mutants per ml 1% K103N, VL 10^5 = 1000 mutants per ml

Mutational load + Increased potency from mutation combinations (no studies?)

	Virologic Failure, No.a		Total No.					
Group vs No Minority Variant ^c	Minority Variant	No Minority Variant	Minority Variant	No Minority Variant	HR (95% CI) ^b			
Any minority variant	111	208	187	798	2.6 (1.9-3.5)			
Any minority variant (multivariate) ^d	98	138	152	617	2.3 (1.7-3.3)			
Minority variant type								
NRTI-resistant	2	104	9	202	1.6 (0.1-17.7)	-		
NNRTI-resistant	109	210	178	807	2.6 (1.9-3.5)			
Efavirenz-resistant	105	188	165	723	2.6 (1.9-3.5)			
Nevirapine-resistant	4	22	13	84	2.7 (0.7-10.3)	_		
Minority variant and adherence							-	
No minority variant and any adhe Any minority variant	rence				1 [Reference]			
Adherence ≥95%	35	138	73	617	1.5 (0.98-2.3)	-	—B —–	
Adherence <95%	63	138	79	617	5.1 (3.6-7.2)		-	-
No minority variant								
Adherence ≥95%					1 [Reference]		l	
Adherence <95%		43	231	386	4.0 (2.8-5.8)			_
Any minority variant								
Adherence ≥95%	35	43	73	386	3.1 (1.9-5.0)			-
Adherence <95%	63	43	79	386	10.6 (6.9-16.4)			
Minority variant, %								
<1	91	209	154	781	2.2 (1.6-3.1)			
≥1	18	209	30	781	5.0 (2.4-10.3)			
<0.5	86	107	143	654	2.2 (1.6-3.0)			
≥0.5	14	107	32	654	5.2 (2.8-9.8)			-
Minority variant copies, No.					(,			_
1-9	8	148	15	720	1.8 (0.9-3.8)	_		
10-99	41	148	71	720	2.2 (1.5-3.2)			
100-999	35	148	55	720	3.0 (2.0-4.5)	:		
>1000	20	148	38	720	41(25-68)			
	20	. 10	00	. 20	4.1 (2.0-0.0)	I	_	 1
						0.3 1.	.0	10.0 20.0

Hazard Ratio (95% CI)

JZ LI et al., JAMA 2011

Low-frequency drug-resistant HIV-1 and risk of virological failure to first-line NNRTI-based ART: a multicohort European case–control study using centralized ultrasensitive 454 pyrosequencing

Alessandro Cozzi-Lepri¹[†], Marc Noguera-Julian²[†], Francesca Di Giallonardo³, Rob Schuurman⁴, Martin Däumer⁵, Sue Aitken⁴, Francesca Ceccherini-Silberstein⁶, Antonella D'Arminio Monforte⁷, Anna Maria Geretti⁸, Clare L. Booth⁹, Rolf Kaiser¹⁰, Claudia Michalik^{11,12}, Klaus Jansen¹¹, Bernard Masquelier¹³, Pantxika Bellecave¹³, Roger D. Kouyos³, Erika Castro¹⁴, Hansjakob Furrer¹⁵, Anna Schultze¹, Huldrych F. Günthard³, Francoise Brun-Vezinet¹⁶, Roger Paredes²[†] and Karin J. Metzner^{3*†} on behalf of the CHAIN Minority HIV-1 Variants Working Group[‡]

Table 2. Factors associated with virological failure

		ORs of viral rebound >200 RNA copies/mL plasma				
Cases, N=76	Controls, N=184	unadjusted OR (95% CI)	Р	adjusted ^a OR (95% CI)	Р	

Sanger consensus

Interpreting Drug Resistance from NGS data

Interpreting Drug Resistance from NGS data

Transmission of Drug resistance (Work in Progress)

HIV drug resistance can be acquired and transmitted

*Self reporting may not be accurate

Ancestral State Reconstruction (Discrete state = NNRTI Resistance)

Phylogenetic networks

Summary

The Oxford HIV Sequencing Pipeline:

What are the potential benefits of ROUTINE implementation of quantitative HIV sequencing in LMIC:

Drug resistance? Resource provisioning? Reaching the undiagnosed and untreated? Economics? The 90:90:90 goals and "the missing 27%"

Challenges:

Setting-up in LMIC: Portable (low-throughput, fast) vs. Centralised (Highthroughput, slow) Who? Indiscriminate vs targeted sampling. Communities vs. individuals Efficient and ethical and infrastructures for data handling

Acknowledgement

Christophe Fraser Tanya Golubchik Matthew Hall Chris Wymant Lucie Abeler-Dorner Mariateresa de Cesare Rafael Sauter Will Probert

The Beehive investigators The PopART investigators (HPTN 071) The PopART Phylogenetics investigators (HPTN 071-2) PANGEA Consortium members

Africa Health Research Institute

Deenan Pillay Steven Kemp Ravindra Gupta Anne Derache

Zambart Project

Barry Kosloff Mohammed Limbada Ab Schaap Helen Ayles

Wellcome Centre for Human Genetics

Rory Bowden George MacIntyre-Cockett

Peter Medawar Building for Pathogen Research Ellie Barnes Paul Klenerman Anthony Brown Azim Ansari

Summary

The Oxford HIV Sequencing Pipeline:

What are the potential benefits of ROUTINE implementation of quantitative HIV sequencing in LMIC:

Drug resistance? Resource provisioning? Reaching the undiagnosed and untreated? Economics? The 90:90:90 goals and "the missing 27%"

Challenges:

Setting-up in LMIC: Portable (low-throughput, fast) vs. Centralised (Highthroughput, slow) Who? Indiscriminate vs targeted sampling. Communities vs. individuals Efficient and ethical infrastructures for data handling

Acknowledgement

Christophe Fraser Tanya Golubchik Matthew Hall Chris Wymant Lucie Abeler-Dorner Mariateresa de Cesare Will Probert Rafael Sauter

The Beehive investigators The PopART investigators (HPTN 071) The PopART Phylogenetics investigators (HPTN 071-2) PANGEA Consortium members

Africa Health Research Institute

Deenan Pillay Steven Kemp Ravindra Gupta Anne Derache

Zambart Project

Barry Kosloff Mohammed Limbada Ab Schaap Helen Ayles

Wellcome Centre for Human Genetics

Rory Bowden George MacIntyre-Cockett

Peter Medawar Building for Pathogen Research Ellie Barnes Paul Klenerman Anthony Brown Azim Ansari

