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Purpose of review

The HIV epidemic in sub-Saharan Africa is far from being under control and the ambitious UNAIDS targets
are unlikely to be met by 2020 as declines in per-capita incidence being largely offset by demographic
trends. There is an increasing number of proven and specific HIV prevention tools, but little consensus on
how best to deploy them.

Recent findings

Traditionally, phylogenetics has been used in HIV research to reconstruct the history of the epidemic and
date zoonotic infections, whereas more recent publications focus on HIV diversity and drug resistance.
However, it is also the most powerful method of source attribution available for the study of HIV
transmission. The PANGEA (Phylogenetics And Networks for Generalized Epidemics in Africa) consortium
has generated over 18 000 NGS HIV sequences from five countries in sub-Saharan Africa. Using
phylogenetic methods, we will identify characteristics of individuals or groups, which are most likely to be
at risk of infection or at risk of infecting others.

Summary

Combining phylogenetics, phylodynamics and epidemiology will allow PANGEA to highlight where
prevention efforts should be focussed to reduce the HIV epidemic most effectively. To maximise the public
health benefit of the data, PANGEA offers accreditation to external researchers, allowing them to access
the data and join the consortium. We also welcome submissions of other HIV sequences from sub-Saharan
Africa to the database.
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INTRODUCTION

The current review will give a brief overview of
how the PANGEA consortium (Phylogenetics And
Networks for Generalized Epidemics in Africa) will
contribute to understanding the HIV epidemics in
sub-Saharan Africa.

In recent years, most phylogenetic studies of
HIV sequences sampled in sub-Saharan Africa have
focussed on drug resistance mutations and their
transmission [1–4], or classification of subtypes
and evolutionary questions of HIV diversity [5–8].
However, sequence data is increasingly being used
to construct transmission networks to inform pre-
vention efforts [9], and to inform epidemiological
studies [10

&

,11
&

]. Studies which combine phyloge-
netics and epidemiology to characterize sources of
transmission in key populations and to detect sour-
ces of transmission and outbreaks have previously
t © 2019 Wolters Kluwe
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been conducted in other regions [12,13,14 ,15 ,
16

&&

]. However, such studies remain rare in sub-
Saharan Africa as sequences are not available in as
large numbers as in North American or European
settings [17].
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KEY POINTS

� PANGEA will vastly increase the number of publicly
available full HIV genomes from sub-Saharan Africa.

� PANGEA will analyse the source-sink dynamics in
several sub-Saharan settings, aiming to find
generalizable characteristics of transmitters and
transmission events.

� PANGEA will provide data upon which HIV prevention
interventions can be based.

� PANGEA welcomes contributions of sequences and
invites external researchers to join the effort to turn
information from sequence data into public
health policy.

Phylogenetics in HIV transmission
To date, PANGEA has generated over 18 000
NGS HIV sequences from five countries in sub-
Saharan Africa, from diverse settings including
cohorts of the population-based cohorts from sur-
veillance sites (Rakai Community Cohort Study)
[18

&&

], the Mochudi Prevention Project [19,20],
the MRC/UVRI Uganda population-based cohorts,
and fisherfolk cohorts [21–23] an MRC/UVRI
Uganda cohort of female sex-workers [24], a cohort
of HIV-1 drug-resistant individuals from northern
KwaZulu-Natal in South Africa (Africa Health
Research Institute Resistance Cohort) [25], partici-
pants from the Partners in Prevention HSV/HIV
Transmission Study [26], and participants from
the TasP trial [27]. Data from the HPTN 071-2
(PopART) trial Phylogenetics ancillary study [28]
will become available in spring 2020. Below we will
 Copyright © 2019 Wolters Kluwer H

FIGURE 1. Source–sink model. Different groups in a population
getting infected (sink), or both (hub). Groups can be characterize
preferences and norms, migrational behaviour, or riskiness of sex
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outline some of the key questions that PANGEA is
planning to address with these data.
AIMS OF THE PHYLOGENETICS AND
NETWORKS FOR GENERALIZED
EPIDEMICS IN AFRICA CONSORTIUM

The overarching goal of the consortium is to use
phylogenetic methods to identify the characteristics
of individuals and groups that make them more
likely to be at higher risk of infection (sinks), at
higher risk of infecting others (sources), or both
(hubs), and to translate these results into informa-
tion that is directly actionable in HIV prevention
[29]. Potentially relevant characteristics include
age, sex, geography, occupation, cultural preferen-
ces and norms, migrational behaviour, riskiness of
sexual behaviour, and use of preexposure prophy-
laxis (PreP). Figure 1 shows a schematic overview of
sources, sinks, and hubs.
ROLE OF PREVALENCE ‘HOTSPOTS’

The HIV epidemic in sub-Saharan Africa is markedly
heterogeneous with foci of high HIV incidence and
prevalence communities (i.e. hotspots) among
larger, relatively low-risk general populations [30].
In East Africa, hotspots include Lake Victoria fishing
communities, which contain disproportionate
numbers of key populations at high risk of infection,
such as sex workers [21,31]. In Southern Africa,
similar high prevalence foci have been observed
along major trading routes and close to mines
[32,33]. Using viral phylogenetics, we are measuring
ealth, Inc. All rights reserved.
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viral flow between high-prevalence and low-preva-
lence communities to quantify the attributable frac-
tion of cases arising from hotspots. Bbosa et al. [34

&

],
for example, discovered that the HIV epidemic in
fishing communities around Lake Victoria acts as a
sink in comparison to inland communities, contrary
to what was previously thought. Ratmann et al. [35]
demonstrated how source-sink analyses including
resolving the direction of transmission can be carried
out using NGS data.
MOBILE POPULATIONS AND THEIR ROLE
IN SUSTAINING LOCAL EPIDEMICS

Migration and mobility are important components
in understanding the spread of HIV in many African
communities [36,37]. There is growing evidence
that mobile population are at higher risk for HIV
and are less likely to be tested and linked to HIV
care and treatment [32,37,38]. Consequently, these
populations most likely have a key role in ongoing
epidemic dynamics. For example, country-wide HIV
incidence rates in Botswana have not declined
despite achieving 90-90-90, which may be because
Botswanan policy prohibits provision of HIV treat-
ment to migrant populations [39]. Mobility is also
a key factor in the interpretation of community
randomized trials of HIV prevention [40]. If HIV
transmissions are common between control and
intervention arms, the impact of Universal Test
and Treat (UTT) inventions will likely be underesti-
mated. With phylogenetic approaches, these events
can be quantified and adjusted for when analysing
treatment effects [41]. Using phylogenetics, we are
characterizing the role of mobile groups and non-
mobile groups to ongoing HIV spread in the geo-
graphic regions represented in the PANGEA-HIV
consortium, including Botswana and the areas of
the two included UTT trials – HPTN 071 (PopART)
and ANRS 12249 (TasP). Furthermore, we will ana-
lyse the geographical movement of the virus to
quantify movement between the cohorts and more
distant geographical locations in sub-Saharan Africa.
CHARACTERISTICS OF TRANSMITTERS
AND TRANSMISSIONS

Another factor that can sustain local epidemics, as
well as posing a problem for clinical trials and
prevention efforts in general, is the heterogeneity
of transmitters. Achieving 90-90-90 and having 72%
of individuals virally suppressed might not reduce
transmission by 72%, if individuals at high risk
of infecting others are more likely to be missed.
Targeted HIV prevention, therefore, requires an
understanding of the risk factors linked to acquiring
 Copyright © 2019 Wolters Kluwe
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HIV and those linked to transmitting HIV. The most
powerful tool of source attribution currently avail-
able to study HIV transmission is the construction of
phylogenetic transmissionnetworks [15

&

,42,43,44
&&

,45].
TRANSMISSION NETWORKS

A viral phylogeny reveals who is close to whom in
the transmission network [46]. With additional epi-
demiological information [15

&

] or modelling [42]
one can identify which of these close individuals
are likely sources of new infections. Following the-
oretical work on incorporating within-host diversity
into phylogenetic inference [47

&

], we have devel-
oped a tool that can be used for source attribution in
HIV NGS data [48

&

]. Once sources have been identi-
fied with quantified uncertainty, epidemiological
questions about the characteristics of transmitters
can be addressed. For example, transmission net-
works will enable us to detect individuals that are
at high risk of infecting others and quantify
their contribution to transmission. More generally,
PANGEA aims to identify demographic, clinical,
and virological correlates of being a transmitter
compared with the background HIV-infected popu-
lation. Transmission networks combined with
mathematical modelling will also allow us to esti-
mate the proportion of transmissions that arise from
individuals in early or acute infection [49]. It has
long been suspected that the majority of HIV trans-
missions derive from undiagnosed and untreated
individuals in acute infection [50]. There is a worry
that acutely infected individuals in hard-to-reach
groups will continue to drive the epidemic even as
increases in ART coverage lead to a sharp overall fall
in incidence. We will construct matrices of who
infects whom, stratified, for example, by age and
sex. This may reveal motifs of transmission, which
have been hypothesised as important drivers of the
epidemic [11

&

,51
&

]. We will document transmissions
of both drug-sensitive and drug-resistant viruses,
and thus quantify important unknown parameters
that influence long-term projections of the risk of
drug resistance in generalized epidemics.
EMERGENCE AND TRANSMISSION OF
DRUG RESISTANCE

The rapidly expanding use of ART, both for treat-
ment and prevention, increases the risk of HIV drug
resistance. Indeed, prevalence of transmitted resis-
tance is increasing throughout the generalized epi-
demics in Africa [52]. This supports modelling work
suggesting that 15% of new infections could be
associated with drug resistance mutations by 2020
[53]. The source of resistance transmission can
r Health, Inc. All rights reserved.
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Phylogenetics in HIV transmission
either be from those with virological failure on
treatment, or from those themselves untreated but
having recently been infected with drug-resistant
virus. The implications of this are profound. Should
evidence emerge of spread of transmitted drug resis-
tance, there is a more urgent need to change first
line therapy. With dolutegravir soon to be made
available, our findings will help to determine how
individual countries prioritize treatment guidelines.
Phylogenetic approaches can help to distinguish if
a patient was likely infected with a drug-resistant
virus or acquired drug-resistance mutations while
on treatment. NGS data also yields information on
whether different drug resistance mutations are
found in different viruses within the same patient
or if a multiresistant lineage is emerging. Combin-
ing both approaches with information on antiretro-
viral treatment will allow us to better understand
how resistance spreads through a population.
COMBINING PHYLOGENETICS WITH
MATHEMATICAL MODELLING OF HIV
PREVENTION

Mathematical models of HIV transmission are key
tools for evidence synthesis, impact assessment,
prioritization of interventions, and prediction.
Yet, despite many developments in methods, statis-
tics, and computation, many uncertainties remain
in key parameters that affect long-term projections
[54]. Uncertainties include the infectiousness of
acute infection, estimates of mixing matrices by
age and risk group, estimates of between-individual
heterogeneity in transmission rates, the existence,
size, magnitude and contribution of hidden high-
risk subpopulations, and the degree and rate of
spatial mixing. These parameters are, at least in
principle, in reach of being estimated using phylo-
genetic analyses. We will use parameters estimated
from phylogenetic analysis to inform our mathe-
matical models of the epidemic.
METHODS DEVELOPMENT

Some of the planned analyses will require the devel-
opment of new methods. For example, PANGEA
samples are not representative samples of the popu-
lation. We will develop methods to adjust for sam-
pling biases based on local knowledge, using Hidden
Markov models, and repeat down-sampling. Some
of our populations live in areas with a high share of
A/D recombinant viruses. We are developing practi-
cal approaches to accommodating recombination in
phylogenetic analyses. As part of the first phase of
the PANGEA project, we held an open-community
exercise to evaluate methods of inferring changes in
 Copyright © 2019 Wolters Kluwer H

176 www.co-hivandaids.com
incidence [55]. Genetic data were simulated under a
range of scenarios at the regional and local commu-
nity level and research groups were invited to apply
their methods blinded to the true dynamics. The
results of this exercise will be used to guide analysis
of the actual PANGEA sequence data but common to
all the approaches was the construction of phyloge-
netic trees from the genome sequence data. State-of-
the-art phylogenetics methods are amongst the
most computationally intense used in the study of
infectious diseases today. We will, therefore, further
develop the BEAST software packages [56,57] to deal
with the challenge of large numbers of sequences
and resulting phylogenetic trees. We will use web-
based interactive graphics like NextStrain [58] to
visualize the resulting complex phylogenies and
integrate them with geographical maps and
epidemiological data.
ETHICS OF PHYLOGENETICS

In our experience, consent rates for phylogenetics
work are very high among study participants. How-
ever, transmission data needs to be handled very
carefully to avoid the possibility that individual
pairs can be identified, especially as some sexual
practices are illegal across African countries. In light
of these concerns, the PANGEA consortium con-
vened a think tank meeting in 2017, including
ethicists, legal experts, and social scientists, to pro-
pose guidelines for phylogenetic analysis [59]. The
guidelines highlight the importance of appropriate
communication of phylogenetic results, and ensur-
ing public health benefit is balanced against risks to
individuals and communities.
HOW TO GET INVOLVED

There are different ways in which external research-
ers can be involved with PANGEA (Fig. 2). Details
are available on the consortium website (www.
pangea-hiv.org).
(1)
ea
Sequence your samples with PANGEA: We offer
subsidized state-of-the-art NGS sequencing [60]
to collaborators who are willing to contribute
their sequence data and associated epidemiolog-
ical data to the PANGEA database 12 months
after they have received the data.
(2)
 Contribute sequence data: If your project is at a
stage where you are ready to reach out to a wider
range of collaborators or if you are looking for a
secure storing place for your data, consider con-
tributing your sequence data to the PANGEA
database.
lth, Inc. All rights reserved.

Volume 14 � Number 3 � May 2019

http://www.pangea-hiv.org/
http://www.pangea-hiv.org/


plasma/serum

Sequencing and

HIV sequences

Secure database

data

Sequence with
PANGEA

Contribute data
to PANGEA

PANGEA members
Analyse

PANGEA data

PANGEA members

epidemiological
data

FIGURE 2. How to get involved: sequence your samples with PANGEA, contribute existing sequences with metadata or
analyse data from the PANGEA database. PANGEA, Phylogenetics And Networks for Generalized Epidemics in Africa.
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(3)
1746
Join the community of PANGEA researchers:
The aim of PANGEA is to make the best possible
use of the data for public health and scientific
discovery, and give credit to the people who
generated the data. PANGEA, therefore, oper-
ates a data sharing policy that is as open as
possible given the sensitivity of the data. Exter-
nal researchers can request access to the data via
a concept sheet proposal. After 6 months and
two successful updates on progress to the con-
sortium, researchers named on the concept
sheet proposal can apply to become an accred-
ited PANGEA researcher. Accredited PANGEA
researchers have access to all sequence data
and less sensitive metadata. They are required
to agree to a code of conduct and update the
consortium regularly on their research. Collab-
orations with researchers from the institutes
that generated the data are encouraged.
 Copyright © 2019 Wolters Kluwe
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PHYLOGENETICS AND NETWORKS FOR
GENERALIZED EPIDEMICS IN AFRICA DATA
Currently the PANGEA database holds over 18 000
NGS sequence files from sub-Saharan Africa
(Table 1) with basic epidemiological metadata asso-
ciated with them. Details are available on the con-
sortium website (www.pangea-hiv.org). For some
cohorts, in-depth metadata is available; contact us
for more information. Currently we hold 6766
sequences from Uganda, 1749 from South Africa,
2530 from Botswana, and 29 from Kenya. Sequenc-
ing from Kenya is in progress and further sequencing
is planned from Uganda and South Africa. Around
7500 sequences from Zambia will become available
in early 2020. Overall, 65% of the sequences span
the full genome or nearly the full genome (>7000
base pairs), 18% of sequences are partial genomes
with at least 3000 base pairs and 17% of sequences
contain at least 1000 base pairs. Using an improved
r Health, Inc. All rights reserved.
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Table 1. HIV sequences generated by the Phylogenetics And Networks for Generalized Epidemics in Africa consortium as of

December 2018

Country Research centre
Sampling

period
Partial genomes

<3000 nt
Partial genomes
3000–7000 nt

Near full genomes
>7000 nt

Botswana Botswana Combination
Prevention Project

2008–2013 222 452 1856

Partners in Prevention 2005–2008 4 0 34

Kenya Partners in Prevention 2006–2013 61 31 399

South Africa AHRI 2012–2013 87 427 1235

Partners in Prevention 2004–2010 6 4 128

Tanzania Partners in Prevention 2006–2008 1 2 20

Uganda MRC Uganda 2009–2013 314 601 1102

Partners in Prevention 2005–2013 88 45 702

Rakai Health Sciences
Program

2012–2014 1832 1319 1299

Zambiaa HPTN 071 PopART
Phylogeneticsa

2016–2018 409 238 5196

aSequences from HPTN 071 PopART Phylogenetics will become available to accredited researchers in spring 2020.

Phylogenetics in HIV transmission
protocol [60], we currently obtain full genomes from
close to 90% of high-quality samples, with many of
the less-complete sequences originating from par-
ticipants who are likely already virally suppressed.
CONCLUSION

Studies of transmission precede the use of phyloge-
netic methods in epidemiology [61–67]. However,
phylogenetics can be in many ways more informa-
tive and/or more feasible than classical epidemiol-
ogy or longitudinal studies of serodiscordant
couples. Viral phylogenetic data cannot only com-
plement epidemiological data and fill the gaps, it
can also provide clinical information, for example,
drug resistance information, more cheaply. Viral
data can be compared more easily across studies
than questionnaires and phylogenetics is much
more scalable than partner studies or contact trac-
ing. Crucially, phylogenetics also provides informa-
tion on transmissions on a different level. Classical
epidemiology will tell us that circumcision modifies
the transmission rate per sexual contact, but phy-
logenetics will tell us in addition that uncircumcised
individuals are an epidemic driver in a certain
population. Phylogenetics can, therefore, help
determine how the HIV virus moves through a
population and can be translated into directly
actionable information for public health, for exam-
ple, suggesting, which groups within a population
need more support and should be prioritized for
interventions.

Having generated over 18 000 full or partial
NGS genomes from five countries in Eastern and
 Copyright © 2019 Wolters Kluwer H
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Southern Africa, PANGEA will focus on analysing
source–sink dynamics, addressing the impact of
mobility and migration, identifying and interpret-
ing patterns of drug resistance, and describing the
wider phylodynamic context of HIV spread. Results
will be used to guide recommendations for HIV
treatment and prevention policy in sub-Saharan
Africa. PANGEA is committed to maximize the pub-
lic health benefit of the data and welcomes project
proposals and data contributions from researchers
who share our aims.
Acknowledgements

We thank all members of the PANGEA consortium for
making this project possible, Dr William Probert,
Dr Chris Wymant, and Dr Tanya Golubchik, and the
members of the PANGEA 2 Steering Committee for
critical reading of the manuscript, and Larisa Gavrila
for help with the references.
PANGEA is funded by the Bill & Melinda Gates
Foundation (consecutive grants OPP1084362 and
OPP1175094).
Members of the PANGEA consortium are listed below:
Helen Ayles, Clinical Research Department, Infectious
and Tropical Diseases, London School of Hygiene &
Tropical Medicine, London, UK, and Zambart, Univer-
sity of Zambia, Lusaka, Zambia; David Bonsall, Big
Data Institute, Li Ka Shing Centre for Health Informa-
tion and Discovery, Nuffield Department of Medicine,
University of Oxford, Oxford, UK; Rory Bowden, Well-
come Trust Centre for Human Genetics, University of
Oxford, Oxford, UK; Vincent Calvez, Institut Camille
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