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Abstract

Viral phylogenetic methods contribute to understanding how HIV spreads in populations, and thereby help guide the
design of prevention interventions. So far, most analyses have been applied to well-sampled concentrated HIV-1 epi-
demics in wealthy countries. To direct the use of phylogenetic tools to where the impact of HIV-1 is greatest, the
Phylogenetics And Networks for Generalized HIV Epidemics in Africa (PANGEA-HIV) consortium generates full-genome
viral sequences from across sub-Saharan Africa. Analyzing these data presents new challenges, since epidemics are
principally driven by heterosexual transmission and a smaller fraction of cases is sampled. Here, we show that viral
phylogenetic tools can be adapted and used to estimate epidemiological quantities of central importance to HIV-1
prevention in sub-Saharan Africa. We used a community-wide methods comparison exercise on simulated data, where
participants were blinded to the true dynamics they were inferring. Two distinct simulations captured generalized HIV-1
epidemics, before and after a large community-level intervention that reduced infection levels. Five research groups
participated. Structured coalescent modeling approaches were most successful: phylogenetic estimates of HIV-1 inci-
dence, incidence reductions, and the proportion of transmissions from individuals in their first 3 months of infection
correlated with the true values (Pearson correlation> 90%), with small bias. However, on some simulations, true values
were markedly outside reported confidence or credibility intervals. The blinded comparison revealed current limits and
strengths in using HIV phylogenetics in challenging settings, provided benchmarks for future methods’ development, and
supports using the latest generation of phylogenetic tools to advance HIV surveillance and prevention.

Key words: HIV transmission and prevention, molecular epidemiology of infectious diseases, viral phylogenetic
methods validation.

Introduction

Recent breakthroughs in human immunodeficiency virus
type 1 (HIV-1) prevention and treatment have provided a
range of tools to reduce HIV-1 transmission (WHO 2015).

Incorporating these strategies into routine care services and
delivering on the commitment to end the HIV-1 epidemic by
2030 remains a major challenge (UNAIDS 2014), particularly
in sub-Saharan Africa where the burden of HIV-1 is greatest.
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This region suffers 75% of all new HIV-1 infections worldwide,
with adult HIV-1 prevalence exceeding 25% in some regions,
and averaging�5% overall (UNAIDS 2015). To sustain public
health interventions at this scale with limited resources, a
sufficiently detailed understanding of the local and regional
drivers of HIV-1 spread is often indispensable. Universal pre-
vention packages (Iwuji et al. 2013; Hayes et al. 2014) benefit
from data that allows monitoring incidence trends and driv-
ers of residual spread, whereas more targeted prevention
approaches (Vassall et al. 2014) by definition require a de-
tailed knowledge of at-risk populations.

The Phylogenetics And Networks for Generalized HIV
Epidemics in Africa (PANGEA-HIV) consortium aims to pro-
vide viral sequence data from across sub-Saharan Africa, and
to evaluate their viral phylogenetic relationship as a marker of
recent HIV-1 transmission dynamics (Pillay et al. 2015).
Previous molecular epidemiological studies indicate that
this approach can characterize transmission landscapes
across a diverse array of epidemic contexts in order to guide
prevention efforts (Fisher et al. 2010; Kouyos et al. 2010; von
Wyl et al. 2011; Stadler et al. 2013; Volz et al. 2013; Grabowski
et al. 2014; Bezemer et al. 2015; Ratmann et al. 2016). Rather
than the partial gene sequences frequently used, the consor-
tium is generating near full-length HIV-1 sequences in order
to further increase the resolution and power of viral phylo-
genomic methods (Dennis et al. 2014). Indeed, such increases
in power are needed to disentangle signal from noise in ep-
idemic settings with frequent co-infection and recombination
events (Grabowski et al. 2014), and to shift focus to recent
transmission dynamics (Dennis et al. 2014).

Available viral phylogenetic techniques can provide esti-
mates of key epidemiological quantities of concentrated
HIV-1 epidemics (Brenner et al. 2007; Fisher et al. 2010;
Stadler and Bonhoeffer 2013; Volz et al. 2013; Bezemer
et al. 2015; Ratmann et al. 2016). But the generalized epi-
demics in sub-Saharan Africa and sequence availability in
these resource-poor settings differ fundamentally from
well sampled concentrated epidemics in wealthy countries,
where viral phylogenetic tools have been proven to be most
effective to date (Dennis et al. 2014). To strengthen the
application of viral phylogenetics in sub-Saharan Africa, in
October 2014 PANGEA-HIV invited research groups to par-
ticipate in a blinded methods comparison exercise. Two
individual-level HIV epidemic models were used to simu-
late generalized HIV-1 epidemics. From these, we gener-
ated corresponding viral sequence datasets comprising
simulated pol, gag and env genes (which we refer to as
full genome sequences for brevity), as well as basic
individual-level epidemiological data on those infected
individuals that were sequenced in the simulations.
External research groups then analyzed the blinded data.

Overall, we aimed to evaluate if the most recent genera-
tion of viral phylogenetic tools could be adapted and used to
estimate epidemiological quantities of central importance to
HIV-1 prevention in sub-Saharan Africa. The specific objec-
tives were inspired by current HIV-1 prevention trials in sub-
Saharan Africa (Iwuji et al. 2013; Moore et al. 2013; Hayes et al.
2014). The primary goal of these trials is to achieve substantial

reductions in HIV-1 incidence over a short period. Viral phy-
logenetics could be an effective tool to measure similar re-
ductions, especially in contexts where incidence cohorts do
not exist, and thereby contribute to monitoring the impact of
prevention strategies. First, participants were asked to esti-
mate recent reductions in HIV-1 incidence resulting from a
simulated community-based intervention over a 3- to 5-year
period. Here, incidence was defined as the proportion of new
cases per year among uninfected adults, and reductions in
incidence were measured in terms of the incidence ratio be-
fore and after the intervention. Second, it has been debated
whether frequent transmission during the early acute phase
of HIV infection could undermine the impact in reducing
incidence of universal test and treat (Cohen et al. 2012). In
concentrated epidemics, viral phylogenetics based on partial
pol sequences have been used to provide estimates of the
proportion of transmissions arising from individuals in their
first year of infection (Volz et al. 2013; Ratmann et al. 2016).
Here, we sought to evaluate whether viral phylogenetics
based on full-genome sequences can provide accurate esti-
mates of the proportion of transmissions from individuals in
early and acute HIV (defined here as in their first 3 months of
infection), because these are likely not preventable in current
prevention trials where testing intervals are 1 year or more
(Iwuji et al. 2013; Moore et al. 2013; Hayes et al. 2014). Third,
as sequence data are now collected as part of HIV-1 preven-
tion trials (HPTN 071 (PopART) Phylogenetics Protocol Team
2015; Novitsky et al. 2015), different approaches to prospec-
tive sequence sampling have emerged. Sequences could be
collected at high coverage in villages or smaller townships at
the risk of missing long-range transmissions, or at lower cov-
erage over geographically much larger areas. We sought to
compare the impact of these sampling strategies on viral
phylogenetic analyses by simulating epidemics in village and
larger regional populations, and sampling sequences at high
and low coverage respectively. Other objectives included eval-
uating the benefit of using concatenated HIV-1 sequences
comprising simulated pol, gag and env genes, as compared
with using simulated pol sequences alone, and the impact of
frequent viral introductions into the modeled population as a
result of long-distance transmission. Table 1 describes the
objectives and reporting variables of the exercise more fully.

Five external research groups participated in the exercise,
out of eight teams that initially indicated interest. Table 2 lists
the phylogenetic methods that were used: the ABC-kernel
method (A. Poon, J. Joy, R. Liang; team Vancouver) (Poon
2015), the birth-death skyline method with sampled ancestors
(C. Weis, G.E. Leventhal, D. Kühnert, D.A. Rasmussen, T. Stadler;
team Basel-Zürich) (Gavryushkina et al. 2014; Kühnert et al.
2016), a metapopulation coalescent approach (B. Dearlove, M.
Hossain, S. Frost; team Cambridge) (Dearlove and Wilson 2013),
the structured coalescent (E. Volz, M. Hossain, S. Frost; team
Cambridge-London) (Volz et al. 2009), and a Bayesian trans-
mission chain analyser (C. Colijn, M. Kendall, X. Didelot, G.
Plazotta; team London) (Didelot et al. 2014). These methods
differed in the underlying transmission and intervention mod-
els, assumptions to facilitate estimation of the reporting vari-
ables, and computational estimation routines. Here, we
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summarize the findings of the exercise, and discuss their impli-
cations for using phylogenetic methods to estimate recent as-
pects of HIV-1 transmission dynamics in generalized epidemics.
Datasets and simulations generated here may be of use for
testing other applications of viral phylogenetic methods, and
are made available alongside this article.

Results

PANGEA-HIV Reference Datasets for Benchmarking
Molecular Epidemiological Transmission Analysis
Methods
The simulations capture a variety of transmission and inter-
vention scenarios across two demographic settings in sub-
Saharan Africa, and are available from https://dx.doi.org/10.
6084/m9.figshare.3103015 (last accessed October 14, 2016).

20 datasets correspond to generalized HIV-1 epidemics in a
region of �80,000 individuals between 1980 and 2020 (table
3). The proportion of infected individuals of whom one se-
quence was sampled (sequence coverage) was 8–16% by the
end of the simulation. These data were simulated under the
individual-based HPTN071 (PopART) model, version 1.1, de-
veloped at Imperial College London (“Regional” model). The
overall simulation pipeline and model components are illus-
trated in figure 1, and further information is provided in sup
plementary table S1, Supplementary Material online. The
Regional model was calibrated to generate an epidemic
with a comparable prevalence at the start of the intervention
to that seen currently in HPTN071 (PopART) trial sites in
South Africa (Hayes et al. 2014). In the model, standard of
care improved according to national guidelines over time,
resulting in steady declines in incidence. In 18 of the 20

simulations, a combination prevention intervention was
started in 2015 for 3 years at varying degrees of uptake and
coverage, resulting in 30% or 60% reductions in incidence
relative to the start of the intervention, when incidence was
close to 2% per year. In half of the 20 simulations, the pro-
portion of early transmissions in 2015 was respectively cali-
brated to 10% and 40% (fig. 2). Ranges in incidence reduction
reflect modeled, optimistic and pessimistic scenarios in on-
going prevention trials in sub-Saharan Africa (Iwuji et al. 2013;
Moore et al. 2013; Hayes et al. 2014). The proportion of trans-
missions from early and acute HIV has been challenging to
estimate without sequence data, and the ranges used here
reflect estimates from several settings in sub-Saharan Africa
(Cohen et al. 2012). About 5–20% of all transmissions per year
occurred from outside the model population, which hindered
prevention efforts in the simulations through continual re-
plenishment of the epidemic.

13 simulated datasets capture generalized HIV-1 epidemics
over 45 years in a smaller village population of �8,000 indi-
viduals (table 3). Sequence coverage was higher in this smaller
population, 25–50% by the end of the simulation. These data
were simulated under an individual-based household model
using the Discrete Spatial Phylo Simulator for HIV, developed
at the University of Edinburgh (“Village” model). Model com-
ponents are illustrated in figure 1, and further information is
provided in supplementary table S2, Supplementary Material
online. The Village model was parameterized to simulate an
HIV-1 epidemic mostly contained within a small rural African
village, with a peak prevalence of 20–25% and peak incidence
of 5–7% without treatment (fig. 2). In 12 out of 13 simula-
tions, a community-level intervention providing antiretroviral
treatment took place for the last 5 years of the simulation.

Table 1. Aims of the PANGEA Phylodynamic Methods Comparison Exercise.

Objectives Reporting Variable

Primary objectives
1 Identify incident trends during the intervention Consider the year ts before the intervention started, and the second last year te of the

simulation. Participants were asked to report HIV-1 incidence trends from ts to te in
terms of “declining”, “stable”, “increasing”

2 Estimate HIV-1 incidence after the intervention Participants were asked to report %Incidence defined as %INCðteÞ ¼ INCðteÞ=SðteÞ,
where INCðteÞ is the number of new cases in year te, and SðteÞ is the number of
sexually active individuals that were not infected in year te

3 Quantify the reduction in HIV-1 incidence at the
end of the intervention

Participants were asked to report the incidence ratio %INCðteÞ=%INCðtsÞ

4 Estimate the proportion of transmissions from
early and acute HIV, just before the intervention

Participants were asked to report the proportion of new cases in year ts from indi-
viduals in their first 3 months of infection

5 Estimate the proportion of transmissions from
early and acute HIV, after the intervention:

Participants were asked to report the proportion of new cases in year te from indi-
viduals in their first 3 months of infection

Secondary objectives

To estimate the impact of the following controlled covariates on the reporting variables:
6 Availability of full genome sequences (HIV-1 gag, pol

and env genes) as compared with partial sequences
(HIV-1 pol gene only)

7 Sequence sampling frame: Sequence coverage at the
end of the simulation; Rapid increases in sequence
coverage; Sampling duration after intervention start

8 Frequency of viral introductions into the modeled
study population

9 Inference of dated viral phylogenies from sequence data
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Treatment uptake was either “fast” or “slow”, with reductions
in incidence averaging between 10% and 40% relative to be-
fore intervention start. Additionally, simulations were config-
ured so that either a small (4%) or large (20%) proportion of
transmissions occurred during the first 3 months of infection.
Some infections originated from outside the model popula-
tion in half of the simulations.

Viral sequences were generated from the simulated trans-
mission chains (fig. 1). First, individuals were sampled at ran-
dom for sequencing. The majority of individuals were only
sampled in the last years of the simulations, reflecting that
sequences are only beginning to be more routinely collected

in sub-Saharan Africa (Iwuji et al. 2013; Moore et al. 2013;
Dennis et al. 2014; Grabowski et al. 2014; HPTN 071 (PopART)
Phylogenetics Protocol Team 2015; Pillay et al. 2015).
Sequence sampling biases can be substantial in real datasets,
but were not included in the model (Carnegie et al. 2014;
Ratmann et al. 2016). Second, viral trees were generated un-
der a hybrid within- and between-host coalescent model. The
viral trees did not always correspond to the transmission
trees, because viruses diversified within infected individuals
before transmission (Pybus and Rambaut 2009). In 25 of the 33
datasets, these viral trees were made available, in order to re-
duce the computational burden of molecular epidemiological

Simulation OutputModel
Component

Regional simulations Village simulations

Demographics

FIG. 1. Simulation pipeline to generate HIV-1 sequence data, viral phylogenies, and accompanying individual-level data. Two simulation models
(Regional and Village) were implemented for the methods comparison. The two individual-level epidemic and intervention models generated
HIV-1 transmission chains in the model population, and its components are shown in blue to green. Next, individuals were sampled for
sequencing, and a viral tree was generated for these individuals. Tree generation accounted for within-host viral evolution under a neutral
coalescent model. Finally, viral sequences comprising the gag, pol and env genes were simulated along the viral tree. Sequence generation
accounted for known variation in evolutionary rates across genes, codon positions, and along within-host lineages. Further details are provided
in supplementary tables S1 and S2, Supplementary Material online.
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FIG. 2. Simulated epidemic scenarios under the Regional and Village models. (A) Six generalized HIV-1 epidemic scenarios were simulated in a region of
�80,000 adult individuals using the Regional model, and (B) nine scenarios were simulated in a rural village population with an initial population of
�6,000 individuals using the Village model. The scenarios differ in terms of incidence, the proportion of early transmissions, and scale-up of the
combination prevention package during the intervention period (gray-shaded time period). From these, 33 datasets were generated, that included either
viral sequences or viral trees. These datasets further varied in the sequence sampling frame and the frequency of viral introductions; see also figure 1 and
table 3. Datasets E, G, I, J, K, P had more frequent viral introductions or higher sequence coverage, and are not shown. The proportion of early
transmissions under the Village model was smoothed with a 3-year sliding window to better visualize trends in this smaller model population.
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analyses (table 3 and supplementary figs. S1 and S2,
Supplementary Material online). For the remaining 13 data-
sets, viral sequences of HIV-1 gag, pol and env genes were
simulated along the viral trees (�1,500, �3,000 and �2,500
nucleotides respectively, for a total of approximately 6,000
nucleotides), from an HIV-1 subtype C starting sequence. The
sequences thus represent generalized subtype C epidemics,
as in most Southern African countries. The nucleotide se-
quence evolution model that was used incorporated known
differences in evolutionary rates by gene and codon position
and relative differences in substitution rates by gene and
codon position (Shapiro et al. 2006; Alizon and Fraser
2013). The coalescent and sequence evolution models did
not account for recombination, sequencing errors, or selec-
tion beyond differential evolutionary rates across genes, co-
dons and within-host lineages (supplementary tables S1 and
S2, Supplementary Material online). As a key indicator of the
realism of the simulated sequences, we calculated the pro-
portion of the variation in evolutionary diversification among
the simulated HIV-1 sequences, that can be explained by a
constant molecular clock model. The proportion explained
ranged from 25% to 60% (supplementary figs. S3 and S4,
Supplementary Material online), broadly in line with esti-
mates on real HIV-1 sequence datasets (Lemey et al. 2006).

The simulations were designed to retain signal for differ-
entiating between the “fast”, “slow” and “no” community-

level intervention scenarios through the viral sequences
provided (supplementary fig. S5, Supplementary Material on-
line). However, we expected that rapid increases in sequence
coverage after the intervention would complicate phyloge-
netic inference. The simulations also retained, on average,
information for differentiating between the 10% and 40%
early transmission scenarios of the Regional simulations at
very low sequence coverage (supplementary fig. S6,
Supplementary Material online). More challenges were ex-
pected on the Village simulations despite higher sequence
coverage, partly because the effect size between the low
and high %Acute scenarios was smaller (supplementary fig.
S7, Supplementary Material online).

Responses to the Methods Comparison Exercise
Participants were primarily asked to estimate incidence re-
ductions from before the intervention (year 39 or 2014) to
just after the intervention (year 43 or 2018), and to estimate
the proportion of early transmissions in the year before and
after the intervention (table 1). Participating teams developed
fast computational strategies for handling full-genome HIV
sequence datasets within given timelines (3 months for 13
Village datasets and 6 months for 20 regional datasets). First,
where only sequences were provided, viral phylogenies were
reconstructed with maximum likelihood methods (Price et al.
2010; Stamatakis 2014). Second, these phylogenies were dated
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FIG. 3. Estimates of HIV-1 incidence from phylogenetic methods on simulated PANGEA datasets. Submitted estimates are shown for each
PANGEA dataset by research team (panel) and type of data provided (either sequences or the viral phylogenetic tree, color). Error bars correspond
to 95% credibility or confidence intervals. True values are shown in black.
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under least-squares criteria or similar fast approaches (To
et al. 2015). Third, dated phylogenies were used as input to
the transmission analysis methods described in table 2. This
sequential approach allowed the teams to obtain phyloge-
netic estimates to all reporting variables for the large majority
of the datasets (see supplementary table S3, Supplementary
Material online). Team Vancouver did not provide estimates
to datasets of the Regional model that contained true phy-
logenetic trees; and teams Cambridge-London and Basel-
Zürich did not provide estimates to datasets of the
Regional model that contained sequences. The most com-
mon reasons for incomplete recall were limited availability of
computing resources, tight timelines to evaluate the simula-
tions, and difficulties in tree estimation when viral introduc-
tions occurred frequently. Nearly all participants focused on
inference from full viral genomes (supplementary table S3,
Supplementary Material online), meaning that the impact of
full genome sequences (concatenated HIV-1 gag, pol and env
genes) as compared with partial sequences (HIV-1 pol gene
only) could not be evaluated.

Estimating Incidence and Reductions in Incidence
Phylogenetic methods differed in their ability to estimate in-
cidence after the intervention (fig. 3). Under the most suc-
cessful computational approach, phylogenetic estimates of
incidence were correlated with true values by 91% (supple

mentary table S2, Supplementary Material online, team
Cambridge-London who used a structured coalescent
model). Bias in these estimates was relatively small for esti-
mates of two teams (on an average 0.35% by team
Cambridge-London and 0.57% by team London). Team
Basel-Zürich achieved substantially more accurate estimates
on the Regional datasets than the Village datasets, whereas
the converse was true for team London (supplementary table
S2, Supplementary Material online).

The accuracy of phylogenetic estimates of changes in in-
cidence as a result of the intervention largely reflected the
accuracy of the underlying incidence estimates (fig. 4).
Phylogenetic estimates of incidence ratios correlated with
the true values by 93% under the structured coalescent ap-
proach of team Cambridge-London, and had only slight up-
ward bias (supplementary table S4, Supplementary Material
online). This meant that large reductions in incidence, which
are expected from combination prevention interventions,
could be correctly detected at relatively low sequence cover-
age when sequences were sampled for 5 years since interven-
tion start by the most successful method. Epidemic
simulations with >25% reductions in incidence were cor-
rectly classified as declining in 15/17 (88%) of all simulations
with a submission by team Cambridge-London, although the
true positive rate was lower with other phylogenetic methods
(supplementary table S5, Supplementary Material online).

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

PANGEA data set

E
st

im
at

ed
 a

nd
 tr

ue
 in

ci
de

nc
e 

ra
tio

Estimates based on concatenated gag, pol, env sequences true tree

D
I

S
T

A
J

L
P

F
O

03
05

01
06

C
G

Q
R

12
B

E
H

K
10

02
08

04
07

M
11

N
09

00 D
I

S
T

A
J

L
P

F
O

03
05

01
06

C
G

Q
R

12
B

E
H

K
10

02
08

04
07

M
11

N
09

00

Team Cambridge Team Cambridge-London rich

Team VancouverTeam London D
I

S
T

A
J

L
P

F
O

03
05

01
06

C
G

Q
R

12
B

E
H

K
10

02
08

04
07

M
11

N
09

00

FIG. 4. Estimates of HIV-1 incidence reductions from phylogenetic methods on simulated PANGEA datasets. Submitted estimates are shown for
each PANGEA dataset by research team (panel) and type of data provided (either sequences or the viral phylogenetic tree, color). Error bars
correspond to 95% credibility or confidence intervals. True values are shown in black.
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Estimating the Proportion of Transmissions from
Individuals in Their First Three Months of Infection
(Early and Acute HIV)
Phylogenetic estimates of the proportion of early transmis-
sions just before and after the intervention were more accu-
rate on the Regional simulations than the Village simulations,
potentially reflecting stronger signal as a result of larger effect
sizes in the Regional simulations (fig. 5 and supplementary
figs. S6–S8, Supplementary Material online). On the regional
simulations, estimates by team Cambridge-London had a
mean absolute error of 3.9% and correlated with true values
by 92%. However, on the Village simulations, the mean abso-
lute error in estimates by team Cambridge-London was 12%
(supplementary table S6, Supplementary Material online).
Other teams had, overall, difficulties recovering the frequent
early transmission scenarios. Team Basel-Zürich achieved the
smallest mean absolute error on the Village simulations (sup
plementary table S6, Supplementary Material online).

Predictors of Large Error in Phylogenetic Estimates
We evaluated to what extent the variation in errors of phy-
logenetic estimates could be associated to systematic

differences in the simulation datasets (referred to as “covar-
iates”), such as sequence coverage and frequency of viral in-
troductions (table 3). Figure 6A illustrates the phylogenetic
estimates that deviated largely from the true values (referred
to as “outliers”). We focused on quantifying the association of
outlier presence with the covariates listed in table 3 using a
partial least squares regression approach, which enabled us to
handle a relatively large number of co-dependent covariates
(see “Materials and Methods” section).

Several covariates could be excluded from this analysis.
Estimates obtained from the simulated full genome sequence
datasets were not more strongly associated with estimation
error than estimates obtained using the phylogenetic trees
from which the sequences were simulated (supplementary
fig. S9 and supplementary table S7, Supplementary Material
online). Shorter, intense sampling periods after intervention
start of 3 years compared with a default of 5 years were also
not strongly associated with larger estimation error (supple
mentary table S7, Supplementary Material online).

Figure 6B shows the proportion of variance in outlier
presence that is explained by each of the remaining co-
variates. Signs indicate the impact of a change in predic-
tor values on the number of phylogenetic estimates with
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FIG. 5. Estimates of the proportion of transmissions from individuals in their first 3 months of infection (early and acute HIV), before the
intervention from phylogenetic methods on simulated PANGEA datasets. Submitted estimates are shown for each PANGEA dataset by research
team and model simulation (panels) and type of data provided (either sequences or the viral phylogenetic tree, color). Error bars correspond to
95% credibility or confidence intervals. True values are shown in black.
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very large error. Subplots are empty when phylogenetic
methods did not produce estimates with large error (in-
dicating a higher degree of success). Overall, with regard
to estimates of incidence and incidence reduction, higher
sequence coverage (16% vs. 8% in the Regional datasets
and 50% vs. 25% in the Village datasets) and a large pro-
portion of sequences obtained after intervention start

(>80% vs. 50%) were associated with more outliers for
more than one phylogenetic method. Frequent viral in-
troductions (20%/year vs. <¼5%/year) were associated
with more outliers by team Basel-Zürich. These predictors
tended to outweigh the impact that true differences in
incidence and incidence reduction had on outlier
presence.
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FIG. 6. Predictors of large error in phylogenetic estimates. (A) For each response, the error in the phylogenetic estimate was calculated, and
statistical outliers were identified. The plot shows error in phylogenetic estimates by team and outcome measure. For large errors, the corre-
sponding PANGEA dataset code in table 1 is indicated. (B) The contribution of the systematically varied covariates in table 1 to the presence of
outliers was quantified through partial least squares regression (PLS, see “Materials and Methods” section). The plot shows the contribution of each
predictor to the variance in outlier presence in colors, and the corresponding signs of the regression coefficients are added. Estimates from team
Cambridge could not be characterized due to small sample size. The impact of the error predictors varied across the primary objectives of
phylogenetic inference, as well as the phylogenetic methods used. With regard to estimates of incidence and incidence reduction, a subset of
phylogenetic methods was particularly sensitive to high sequence coverage, a very large proportion of sequences obtained after intervention start,
and a large frequency of viral introductions. With regard to estimates of the proportion of early transmissions, outliers were in several cases best
explained by true differences in the proportion of early transmissions.
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In contrast, with regard to estimates of the proportion of
early transmissions, outliers were in several cases best ex-
plained by true differences in the proportion of early trans-
missions. Several phylogenetic methods had substantial
difficulty estimating frequent early transmissions. Low sam-
pling coverage did not contribute substantially to the pres-
ence of outliers. To substantiate this observation further, we
compared phylogenetic estimates from just before the inter-
vention to those after the intervention, and found no con-
sistent improvements in accuracy with a doubling of
sampling coverage (supplementary fig. S10, Supplementary
Material online). Instead, outlier presence could be explained
through the simulation model, with more outliers on the
Village datasets. These simulations were characterized by
smaller sample sizes and smaller effect size (table 3 and sup
plementary figs. S6 and S7, Supplementary Material online).

Discussion
The PANGEA methods comparison exercise represents a
community-wide effort for advancing the use of phylogenetic
methods to estimate aspects of recent HIV-1 transmission
dynamics of generalized epidemics in sub-Saharan Africa.
This region is affected by the largest HIV-1 epidemics world-
wide. Viral phylogenetics could be a central tool to guide HIV-
1 prevention in these settings (Dennis et al. 2014).

It is not possible for phylogenetic methods to capture all
factors that influence the spread of HIV-1, ranging all the way
from biological factors determining person-to-person trans-
mission (Cohen et al. 2011) to the structure of sexual net-
works on the community level (Gregson et al. 2002; Tanser
et al. 2011), and the broader impact of prevention and care
services (Gardner et al. 2011). Of course, capturing all such
features may not be needed: particular aspects of HIV-1
spread in generalized epidemics could be estimable from se-
quence data under the simplifying assumptions of phyloge-
netic methods, and at relatively low sequence coverage.

To validate this hypothesis from the outset, the PANGEA-
HIV team simulated data under two highly complex HIV
transmission and intervention models, whose components
are considered essential for understanding long-term HIV
transmission dynamics (Eaton et al. 2012). The aspects of
HIV-1 spread evaluated here (table 1) were chosen both be-
cause molecular epidemiological studies into the sources of
transmission and temporal changes in epidemic spread are in
principle feasible (von Wyl et al. 2011; Stadler et al. 2013; Volz
et al. 2013; Dennis et al. 2014; Ratmann et al. 2016), and
because of their relevance to on-going HIV-1 prevention ef-
forts in sub-Saharan Africa. Crucially, the model simulations
were constrained to pessimistic and optimistic projections of
the likely outcomes of on-going HIV-1 prevention efforts in
sub-Saharan Africa (Iwuji et al. 2013; Moore et al. 2013; Hayes
et al. 2014), as well as what sequence data could become
available in these settings.

The methods comparison exercise was challenging. First,
the exercise focused on quantifying recent transmission dy-
namics, whereas HIV-1 sequence data are more routinely
used to characterize the origins and spread of the virus

(Faria et al. 2014), or to undertake descriptive analyses of
putative transmission chains (Brenner et al. 2007; Dennis
et al. 2012). To be precise, the challenge here was in obtaining
quantitative estimates of HIV-1 incidence and the sources of
transmission in generalized epidemics, and to do so close to
the present, when the phylogenetic signal weakens (de Silva
et al. 2012). Second, sequence coverage was relatively low in
most simulations, as is expected for most endemic-phase
settings in sub-Saharan Africa. Furthermore, frequent viral
introductions complicated the interpretation of viral trees,
timelines were tight (3 months for the Village datasets, and
6 months for the Regional datasets), and phylodynamic mod-
els had to represent viral spread in heterogeneous popula-
tions (males and females with different risk profiles). We
aspired to evaluate the extent to which these challenges
can be addressed with full genome HIV-1 sequences, and
through customized phylogenetic methods.

The methods comparison exercise demonstrates that viral
phylogenetic tools can successfully estimate aspects of recent
transmission dynamics of generalized HIV-1 epidemics at
limited sequence coverage of the infected population, when
full-genome sequences are available. Two methods, the ABC
kernel method of team Vancouver and the Bayesian trans-
mission analyzer of team London (table 2), were newly de-
veloped in response to the exercise. The birth–death skyline
model with sampled ancestors (Gavryushkina et al. 2014) and
its multi-type analogue (Kühnert et al. 2016) are readily avail-
able through the BEAST2 software package. The structured
coalescent (Volz et al. 2009) was customized to reflect avail-
able information on the simulated epidemics, and required
considerable resources (roughly 1 week of computation time
on a 64-core machine of 2.5 Ghz processors per analysis). The
methods comparison reflects these different stages in devel-
opment and customization. In this context, the structured
coalescent approach was overall most accurate, producing
accurate estimates of incidence and changes in incidence,
as well as broadly accurate estimates into the proportion of
early transmissions on the Regional simulations from full-
genome sequences. Confidence intervals were sufficiently
tight for epidemiological interpretation, bearing in mind
that uncertainty in tree reconstructions was ignored. This
indicates that the latest generation of viral phylogenetic
methods can complement standard incidence estimation
techniques where full-genome sequences are available from
the general population. The use of sequence data for estimat-
ing incidence trends in sub-Saharan Africa could be particu-
larly useful where demographic and health survey data are
sparse (Pillay et al. 2015), no relevant observational HIV co-
horts exist, or where estimates would otherwise be solely
reliant on data from particular population groups such as
pregnant women (Montana et al. 2008). Further, this study
supports using viral phylogenetic methods for identifying
sources of HIV-1 transmission from full-genome sequences
in certain settings. Broadly accurate estimates into the frac-
tion of transmissions attributable to a population group were
obtained when both transmission from that group was not
infrequent (at least 10%) and sample size was not too small
(thousands of sequences for the HIV-infected populations
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considered). Viral phylogenetic methods could thus help to
quantify the contribution of several other source populations
that are of key interest for prevention in sub-Saharan Africa,
including the proportion of individuals infected within local-
ized high prevalence areas (Tanser et al. 2013), or the propor-
tion of young women infected by male peers (Dellar et al.
2015).

We varied aspects of transmission dynamics and the sam-
pling frame in the simulations, to obtain a more systematic
understanding of methods’ performance (fig. 5). Most phylo-
genetic methods did not identify significant differences be-
tween the high/low early transmission scenarios, and this was
also the case when basic genetic distance measures recovered
differences between the high/low early transmission scenarios
(regional simulations, supplementary fig. S6, Supplementary
Material online). The true proportions of early transmissions
were also frequently outside 95% confidence or credibility
intervals. This indicates that further methods’ improvement
is needed for estimating the proportion of early transmissions,
and potentially for attributing sources of HIV-1 transmission
more broadly at the low sequence coverage scenarios consid-
ered. Further, nearly all participants reported difficulties in
achieving numerical convergence of their methods on full-
genome sequence data (unpublished submission reports).
This could explain the above observations in part, and in
particular why the accuracy of early transmission estimates
did not improve when using larger datasets with higher se-
quence coverage (fig. 5 and supplementary fig. S10,
Supplementary Material online). Further investigations are
needed. Finally, our error analysis suggests that explicit mod-
eling of unobserved source demes (team Cambridge-
London) or identification of spatially localized phylogenetic
clusters prior to transmission analyses (team London) could
be effective approaches for mitigating the negative impact of
viral introductions on phylogenetic analyses on mobile pop-
ulations (Grabowski et al. 2014). The simulated PANGEA
datasets as well as various aspects of the corresponding
true epidemics and interventions are available for future
benchmarking.

This study has limitations. First, phylogenetic methods
were evaluated on simulated HIV-1 epidemics. While the
use of two models guards to some extent against over-
interpretation, analyses of real datasets may be more complex
and could be associated with overall larger error. Of note, the
simulated datasets are free of sequence sampling biases,
which can substantially distort phylogenetic inferences
(Carnegie et al. 2014). Second, the evolutionary components
of the two models generated sequences that do not contain
gaps or sequencing errors, cannot be translated to amino
acids, were correctly aligned, and did not contain recombi-
nant sequences. Viral trees reconstructed from real sequence
data are likely less accurate than those used in this analysis, a
potential source of error that is not represented in our eval-
uations. Frequent recombination could imply that full HIV-1
genomes are more appropriately analyzed on a gene-by-gene
basis (Hollingsworth et al. 2010; Ward et al. 2013), in contrast
to our full-genome analyses of simulated sequences that ex-
cluded recombinants. This limitation is particularly relevant

to epidemic settings in sub-Saharan Africa where multiple
subtypes and recombinant forms circulate at high frequen-
cies. Third, phylogenetic analyses of full-genome sequences
were not compared with similar analyses using shorter frag-
ments of the genome such as, e.g., several 250 base pair re-
gions from the gag, pol or env genes. Full-genome sequences
may not be required for estimating recent changes in HIV-1
incidence or for quantifying the sources of HIV-1 transmis-
sion, and more cost-effective sequencing approaches could
provide similar results.

The PANGEA-HIV methods comparison exercise showed
viral phylogenetic methods can be adapted to provide quan-
titative estimates on aspects of recent HIV-1 transmission
dynamics in sub-Saharan Africa, where sequence coverage
remains limited. On simulations, the structured coalescent
approach was overall most accurate for estimating recent
changes in incidence and the proportion of early transmis-
sions in modeled populations with generalized, and large
HIV-1 epidemics. Future molecular epidemiological analyses
would ideally make use of several of the evaluated phyloge-
netic tools, in order to obtain robust insights into HIV-1
transmission flows and how to disrupt them. Further meth-
ods’ refinement is required to this end, with our analysis
suggesting a focus on estimating the sources of HIV-1 trans-
mission from full-genome HIV-1 sequence data. These find-
ings were obtained through a community-wide, blinded
evaluation, and thereby add confidence into the use and in-
terpretation of viral phylogenetic tools for HIV-1 surveillance
and prevention in sub-Saharan Arica and beyond.

Materials and Methods

Study Design
The blinded PANGEA-HIV methods comparison exercise was
announced in October 2014 at HIV Dynamics & Evolution,
and later on the PANGEA-HIV website. In a training round
(round 1), participants were asked to identify trends in inci-
dence on simulated sequence datasets that were similar in
size to the datasets in table 3, but that had qualitatively dif-
ferent epidemic dynamics. Data included full-genome viral
sequences, patient meta-data, and further broad information
on the simulated epidemic (supplementary text S1,
Supplementary Material online). Participation was unre-
stricted. In December 2014, the training data were un-
blinded. All participants shared their findings. PANGEA-HIV
and the participants agreed on the objectives and reporting
variables listed in table 1; on the timelines for the second final
round; and that participation will be retrospectively restricted
to teams addressing at least one of the pre-specified reporting
variables. Simulation models were updated to include explicit
HIV care and intervention components, and re-calibrated to
generate the epidemic scenarios shown in figures 1 and 2.
Blinded datasets were released on 10 February 2015 (supple
mentary text S2, Supplementary Material online). The dead-
line for submissions was 8 May 2015. Questions and clarifica-
tions during the exercise were disseminated to all
participants. Submissions were checked manually, and teams
were given the opportunity to fix conceptual errors. Few
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submissions to the Regional simulations were obtained, and
the deadline for submission to Regional datasets was ex-
tended to 18 August 2015. The Village simulations were
un-blinded on 14 May 2015, and a preliminary evaluation
was presented and reviewed by all participants at the 22nd
HIV Dynamics & Evolution conference. Teams Vancouver
and Basel-Zürich informed the evaluation group of a concep-
tual misunderstanding of the reporting variables, and pro-
vided updated incidence estimates after the intervention
1 day after the presentation. These updates on the Village
datasets were used in the evaluation reported here. The
Regional datasets were un-blinded on 3 September 2015.

Village Simulations
The Village simulations were generated using the Discrete
Spatial Phylo Simulator with HIV-specific components
(DSPS-HIV, https://github.com/PangeaHIV/DSPS-HIV_
PANGEA; last accessed October 14, 2016). The DSPS-HIV is
an individual-based stochastic simulator which models HIV-1
transmissions along a specifiable contact network of individ-
uals and produces a line-list of all events (Hodcroft 2015).
Viral phylogenies that reflect between- and within-host viral
evolution were generated along transmission chains using
VirusTreeSimulator (https://github.com/PangeaHIV/
VirusTreeSimulator; last accessed October 14, 2016). HIV-1
subtype C sequences were simulated along these viral phy-
logenies using pBUSS (Bielejec et al. 2014), with substitution
rates parameterized from analyses of African subtype C se-
quences. An overview of the simulation pipeline is shown in
figure 1, and details about the parameter values and assump-
tions used in the DSPS-HIV and to generate phylogenies and
sequences are found in supplementary table S2,
Supplementary Material online. Notably, assumptions were
made in sexual mixing partners, partner duration, interven-
tions, sampling, and between- and within-evolution complex-
ity. Disease progression and transmission within the DSPS-
HIV are determined by set-point viral load using previously
described relationships (Fraser et al. 2007). Simulations were
parameterized to reflect estimates of prevalence and inci-
dence from the peak of the HIV-1 epidemic in the late
1980s and early 1990s (Serwadda et al. 1992; Wawer et al.
1994), before treatment was widely available, with the root of
the sequences dating back �40 years previously, coinciding
with the recent subtype C estimates of a common ancestor in
the 1940s (Faria et al. 2014). Further information about the
DSPS-HIV will be available in a forthcoming publication.

Regional Simulations
The Regional simulation model consists of a stochastic,
individual-level epidemic transmission and intervention
model, and an evolutionary model that generates viral phy-
logenies and sequence data to simulated transmission chains.
Figure 1 and supplementary table S1, Supplementary Material
online, describe the overall simulation pipeline, model com-
ponents, parameters, and parameter values. Notably, assump-
tions were made on: sexual risk behavior (proportion of
individuals in risk groups, mixing between risk groups, partner
change rates); HIV infection (relative transmission rates);

interventions (population-level effectiveness of ART);
within-host evolution (neutral coalescent model, no co-
infection and no recombination); between-host evolution
(transmission of one virion, no recombination); and sequence
sampling (at time of diagnosis of randomly selected individ-
uals). To obtain the six epidemic scenarios shown in figure 2,
we varied the relative transmission rate from early infections
as well as parameters relating to uptake of the combination
intervention respectively. The simulation algorithm is avail-
able from https://github.com/olli0601/PANGEA.HIV.sim (last
accessed October 14, 2016), and combines (with further
code): the individual-based HPTN071 (PopART) model ver-
sion 1.1 to generate transmission chains, the
VirusTreeSimulator (https://github.com/PangeaHIV/
VirusTreeSimulator; last accessed October 14, 2016) to gen-
erate viral trees from transmission chains, and SeqGen version
1.3 (Rambaut and Grassly 1997) to simulate viral sequences
along viral trees.

Protocols for Phylogenetic Transmission Analyses
All participants adopted overall similar computational strat-
egies that first reconstructed dated maximum-likelihood trees
(Price et al. 2010; Stamatakis 2014; To et al. 2015), and then
considered the viral trees fixed in one of the following trans-
mission analyses:

ABC Kernel Method
Reporting variables were estimated with an experimental
kernel-ABC method that combines a kernel method on
tree shapes (Poon et al. 2013) with a framework for approx-
imate Bayesian computation (ABC). The basic premise of
ABC is that it is usually easier to simulate data from a model
than to calculate its exact likelihood for the observed data. A
model can then be fit to the observed data by adjusting its
parameters until it yields simulations that resemble these
data, bypassing the calculation of likelihoods altogether. We
formulated a structured compartmental SI model (Jacquez
et al. 1988) that was informed by the descriptions of the
agent-based simulations that were distributed to all partici-
pants. Specifically, the model comprised three populations: a
main local population, a second local high-risk minority pop-
ulation, and an external source population. Each population
was further partitioned into susceptible and infected groups,
where the latter was stratified into three stages of infection
(acute, asymptomatic, and chronic). Mixing rates between
the main and minority local populations were controlled by
two parameters to allow for asymmetric mixing. Individuals
with acute or asymptomatic infections migrated from the
external region to the local region at a constant rate m,
and replaced with new susceptible individuals in the external
region. One infected individual in the external source popu-
lation started the simulation. Coalescent trees were then sim-
ulated based on population trajectories derived from the
numerical solution of the ordinary differential equations
that represent the model, using the R package rcolgem. The
subset tree kernel (Poon et al. 2013) was used as a distance
measure between the simulated coalescent trees and the

Phylogenetic Tools for Generalized HIV-1 Epidemics . doi:10.1093/molbev/msw217 MBE

199

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article-abstract/34/1/185/2670195 by C
airns Library, U

niversity of O
xford user on 23 August 2019

Deleted Text: one 
Deleted Text: s
https://github.com/PangeaHIV/DSPS-HIV_PANGEA
https://github.com/PangeaHIV/DSPS-HIV_PANGEA
https://github.com/PangeaHIV/VirusTreeSimulator
https://github.com/PangeaHIV/VirusTreeSimulator
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw217/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw217/-/DC1
Deleted Text: s
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw217/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw217/-/DC1
https://github.com/olli0601/PANGEA.HIV.sim
https://github.com/PangeaHIV/VirusTreeSimulator
https://github.com/PangeaHIV/VirusTreeSimulator
Deleted Text: p
Deleted Text: t
Deleted Text: a
Deleted Text: k
Deleted Text: m


reconstructed viral phylogenies on available sequence data, or
the provided phylogenies. A Markov chain Monte Carlo im-
plementation of ABC was used to fit the model. This kernel-
ABC approach was validated on simulated data from more
conventional compartmental models (Poon 2015).

Birth–Death Skyline Method with Sampled Ancestors
Phylodynamic analyses were performed in BEAST v2.0
(Bouckaert et al. 2014) using the add-ons “bdsky” (Stadler
et al. 2013), “SA” (Gavryushkina et al. 2014) and “bdmm”
(Kühnert et al. 2016). Under the birth–death skyline model
with sampled ancestors (“SA” module), individuals could
transmit with some probability after sampling which im-
proved estimation of the reporting variables in preliminary
analyses (round 1 of the exercise). To estimate the proportion
of early transmissions, the multi-type birth–death model was
used with two compartments (“bdmm” module) to consider
individuals in their first 3 months of infection separately from
those in later stages of infection. In all analyses, time was
partitioned into different intervals to obtain estimates of vary-
ing transmission rates through time. As further described in
supplementary text S3, Supplementary Material online, for
both Village and Regional simulations, lognormal priors
were used for the effective reproductive number (mu¼ 0
and sigma¼ 0.75) and the becoming-non-infectious rate
(lognormal with mu¼�1 and sigma 0.5). Uniform priors
were used for the sampling proportion, and specified based
on available meta-data. For the Village datasets 0, 1, 2, 3, 4, 9,
10, 11 and 12, we assumed a priori a sampling proportion
between 15% and 40%; for Village datasets 5, 6, 7 and 8 be-
tween 40% and 100%; and for the Regional datasets between
5% and 10%. The prior distribution for the removal probabil-
ity r was chosen based on an estimate of the proportion of
sampled infected individuals that are on treatment, and cal-
culated from available survey data before intervention start.
Sensitivity analyses on these prior choices were conducted.
The reporting variables were estimated from MCMC output
of the posterior model parameters using a customized pro-
cedure that is fully described in supplementary text S3,
Supplementary Material online.

Bayesian Transmission Chain Analyser
The Bayesian approach reported in (Didelot et al. 2014) was
adapted to account for incomplete sampling as well as het-
erogeneity in HIV transmission rates. In place of a susceptible-
infectious-recovered (SIR) model (as in Didelot et al. 2014) a
generalized branching model was used to describe transmis-
sion dynamics. In this model, the (prior) time interval be-
tween a case becoming infected and infecting others (tgen)
is distributed such that there is a peak after infection, a
chronic phase, and increased infectivity with progression to
AIDS. Cases were sampled after a random time since becom-
ing infected (tsamp). The prior distribution of the numbers of
secondary cases was negative binomial (n¼ 5, P¼ 0.7), re-
flecting a convolution of a Poisson distribution conditioned
on a gamma-distributed overall infectivity. To account for
infected individuals in transmission chains for whom a

sequence was not available, likelihood terms were adjusted
by numerically calculating the probability that a case infected
at a given time had no sampled descendant cases by the time
the study finished, and then conditioning on each case’s num-
ber of sampled and unsampled descendants. A reversible-
jump Bayesian MCMC approach with proposal moves as
described in (Didelot et al. 2014) was used to fit the model.
This approach produces a posterior collection of trans-
mission trees. From these, we extracted the portion of
infections in the acute stage, recent changes in incidence
and other outcomes required for the comparison study.
The generation time tgen had prior tgen � 0.4
gamma(1.3,1)þ 0.6 gamma(3.5,3.5) where the arguments
are the shape and scale parameters. The time to sampling
had prior tsamp � gamma(0.7, 1.5).

Structured Coalescent
Structured coalescent models were implemented in the rcol-
gem R package and were based on compartmental infectious
disease models using the approach described in (Volz 2012).
These models were tailored to the Regional and Village sce-
narios, and included compartments for stage of infection
(early HIV infection through AIDS as in Cori et al. 2014),
sex, and diagnosis/treatment status. Transmission rates
were allowed to vary between compartments, and general-
ized logistic functions described secular trends in the force of
infection through time. Coalescent models also included a
deme for the unsampled source deme to capture the effects
of lineage importation into the surveyed region. Models were
fitted to the dated viral phylogenetic trees and to available
epidemiological data under the approximation that the cor-
responding likelihood terms are independent. For the
Regional simulations, the contribution to the likelihood
model of the CD4 counts at diagnosis and gender of all se-
quenced individuals was assumed multinomial; the propor-
tion of diagnoses with a sequence was assumed binomial; and
that of survey data (sex, diagnosis, and treatment status) was
assumed multinomial. For the Village simulations, fewer
meta-data variables were available. The likelihood model as-
sumed that estimated HIV prevalence was within the bounds
given by the available survey data. A parallel Bayesian MCMC
technique (Calderhead 2014) was used to obtain posterior
distributions of model parameters.

Statistical Analysis
Phylogenetic estimates and true values were transformed so
that their differences were approximately normally distrib-
uted. For incidence and incidence reductions, the error
ei of response i was calculated as ei ¼ logðx̂iÞ � logðxiÞ,
where x̂i is the phylogenetic estimate and xi the true value
on dataset i; for proportions, the error was calculated as
ei ¼ x̂i � xi. Data points outside the whiskers of Tukey box-
plots were considered as outliers.

To identify covariates associated with large error in phylo-
genetic estimates, stepwise model selection with the
stepGAIV.VR procedure in the gamlss R package was used
to reduce the number of covariates at significance level 0.01
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(supplementary table S4, Supplementary Material online).
The contribution of the remaining covariates to outlier pres-
ence (response) was evaluated with partial least squares (PLS)
regression (Boulesteix and Strimmer 2007), because of the
limited number of datasets and dependencies amongst the
covariates. PLS regression is a dimension reduction technique
that identifies combinations of covariates (PLS latent factors)
that are maximally correlated with the response variable,
and then regresses the response variable against the latent
factors. The first four latent factors that explained most of the
variance in outlier presence were considered in the error
analysis. Figure 5B shows, in the notation of (Boulesteix and
Strimmer 2007), the sign of the PLS regression coefficients Bj1
for each covariate j to the univariate response variable across
the first c ¼ 4 latent factors. The proportion of variance pj in
the response variable attributable to each covariate j is calcu-
lated as pj ¼

Pc
k¼1

wjk

w Þ
2 vk

�
, where wjk is the weight of co-

variate j to the kth latent factor and vk is the variance
explained by the kth latent factor. PLS regression was per-
formed with the plsr routine in the pls R package.

Supplementary Material
Supplementary figures S1–S10, tables S1–S7, and text S1–S4
are available at Molecular Biology and Evolution online.
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Table S1 Model components and assumptions of the Regional Model.  
 
Model parameters 

 
Choice of parameter values 

 
Type of 
evidence 
 

Demographics  
Individuals enter the modelled population continuously at age 13, leaving the population when they die, either from 
disease related mortality or other reasons. The overall population is slowly growing in size at a rate similar to South 
Africa. 
 Population size in 1960 15,000 individuals aged 13 or older Assumed 

 Number of new individuals 
aged 13 per year 

The fertility rate was age-dependent, and calibrated to UNPD 
WPP 2006 South Africa estimates. A truncated Gamma 
distribution with shape parameter 15, scale parameter 1.6, 
minimum 13 years and maximum 50 years was used. At any time 
step in the model simulation, the number of new individuals of 
age 13 was obtained as the expected number of new arrivals under 
the truncated Gamma distribution. New individuals had 50% 
probability of being male. 
 

Empirical 

 Population mortality rate The mortality rate was age- and time-dependent, and calibrated to 
World Bank Global Health Observatory data 
(http://apps.who.int/gho/data/view.main.1360?lang=en). The final 
model had the form exp(0.001*(a-13)1.7  + 0.002*(a-13)1.7 * 60/(t-
1900) – 4.9). 

Empirical 

Sexual partnerships 
Once individuals entered the model, they may form and break up sexual partnerships. Individuals form partnerships 
assortatively by risk group and age. All partnerships are heterosexual. 
  

Sexual risk behavior 
 
3 risk groups categories (high/medium/low) as in (1). 

 
Assumed 
 

 Proportion in high/ medium/ 
low risk group when 
entering population 
 

Men: 50% / 40% / 10%; Women: 60% / 30% / 10%. Assumed  

 Maximum number of 
simultaneous partners 

High: 10; Medium: 3; Low: 1. Assumed 

 Rate of partner acquisition 1.2 partners per year if maximum number of simultaneous 
partners not reached. 

Assumed 

 Mixing between risk groups 10% of one’s partnerships made within a risk group 
(assortatively), and the remainder made at random in any group. 

Assumed 

 Mixing between age groups Strongly assortative, determined from Manicaland cohort survey 
data. 

Empirical 

 Partnership duration Gamma distribution with shape parameter 10 and scale parameter 
2.5. 
 

Assumed 

Viral Introductions 
The epidemic was seeded in 1980 and further viral introductions occurred throughout the simulation. 
  

Seed cases 
 
The simulation was initially run for 20 years without HIV-1, to 
allow partnerships to reach a steady state. In 1980, 0.5% of low-
risk and 1% of medium and high-risk individuals are seeded HIV-
1 positive, with HIV-1 transmission occurring from that point 
onwards. 
 

 
Assumed 

 Proportion of viral 
introductions among annual 

5% or 20%, range includes frequent viral introductions as reported 
in settings with highly mobile populations (2, 3) 

Varied in 
simulations 



 2 

new cases  
 

HIV-1 infection  
HIV-1 negative individuals are exposed to risk of infection when they are in a serodiscordant partnership. Infection 
can occur at any time during a serodiscordant partnership, with the risk of infection depending upon the HIV-1 stage 
of the infected partner, and whether they are on ART or not at that time. For male HIV-1 negative individuals risk of 
infection also depends on their circumcision status. 
  

Proportion in SPVL group < 
4, 4-4.5, 4.5-5, ≥ 5 
log10 copies/μL after 
seroconversion 
 

 
25% in each group, similar to (4). 

 
Empirical 

 Duration of early 
transmission phase (months) 
 

Sampled uniformly between 1 to 5 months, from (5). Empirical 

 Duration of CD4 stages 
>500, 350-500, 200-350 and 
≤200 cells/mm3 when not on 
ART 
 

Sampled uniformly from ranges in (4) dependent on CD4 stage 
and SPVL group. 

Empirical 

 Duration CD4 stages >500, 
350-500, 200-350 and ≤200 
cells/mm3 when on ART 
 

No progression if virally suppressed; duration of each CD4 stage 
is doubled if virally unsuppressed as in (1). 

Assumed 

 CD4 of individual after end 
of early transmission phase 
 

Individuals can start at a lower CD4 stage with a probability from 
(4) dependent on their SPVL group. 

Empirical 

 Probability of transmission 
from individual with 
CD4>500cells/mm3 not on 
ART, per time step 

Baseline transmission probability Calibrated 
to model 
incidence 
and 
prevalence 

 Relative increase in 
transmission probability 
during early transmission 
phase 
 

6.0 (when ~10% of transmissions early) and 26.0 (when ~40% of 
transmissions early), values from (5, 6) 
 

Varied in 
simulations 

 Relative increase in 
transmission probability 
(compared to baseline 
transmission probability) 
when CD4 350-500 / 200-
350 / ≤200 cells/mm3 
 

1.0 / 1.9 / 3.0 
 

Assumed 

Intervention  

The intervention model includes HIV-1 testing, male circumcision, ART provision and loss-to-follow up from ART.  
 
HIV-1 testing is divided into two separate rates. Firstly, there is a standard of care (background) rate that increases 
over time, with HIV-1 testing beginning in 2000 and ART becoming available in 2004, reflecting historical scale-up 
of testing in sub-Saharan Africa. Secondly, starting in 2015, intensive annual testing rounds are modelled, that 
mimic the HIV-1 testing component of the HPTN-071 combination HIV-1 prevention intervention. 
 
Men testing HIV-1 negative, who were not previously circumcised, are offered medical male circumcision in the 
model. Once circumcised, susceptibility to HIV-1 is reduced. Medical male circumcision rates differ over time, 
reflecting historical scale-up and strengthened testing as part of the combination prevention intervention. 
 
Individuals only start ART after a positive HIV-1 test result, although they may be lost to follow-up before this 
occurs. After ART start, individuals remain virally unsuppressed during an early ART period. This periods lasts on 
average 6 months. Thereafter, individuals become either virally suppressed, or not fully suppressed. Infectivity is 
reduced when an individual is on ART, but it is more substantially reduced if individuals are virally suppressed. 
Individuals on ART may drop out of treatment at any time after ART start. After drop-out, individuals may re-start 
therapy. The proportion of HIV+ individuals on ART under the different intervention scenarios is shown in figure 2 
of the main text. 
  

Relative reduction in 
 
0.6, from (7-9) 

 
Empirical 
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susceptibility when 
circumcised 
 

 Effectiveness of ART when 
no virally suppressed, or 
during early ART 
 

0.45 Assumed 

 Effectiveness of ART when 
virally suppressed 
 

0.9 Assumed 

 Annual intervention 
coverage 
 

Fast: 90%; Slow: 20%; No intervention: 0%. Varied in 
simulations 

 Uptake (% who successfully 
start ART) 
 

Background: 30% (CD4>200); 60% (CD4≤200 cells/mm3) 
Intervention: 50% (CD4>200); 75% (CD4≤200 cells/mm3) 

Assumed 

Sequence Sampling  
Since 2000, sequences were randomly sampled at time of diagnosis in proportion to the number of annual new 
diagnoses. The proportions of individuals sampled between 2000-2014 and 2015-2020 are controlled by two 
parameters. One sequence was sampled per individual. The first parameter is the total number of sequences sampled. 
The second parameter is the proportion of sampled sequences that are obtained after intervention start in 2015. In 
addition, the sampling duration was also varied. 
  

Duration of sampling after 
intervention start. 
 

 
3 years or 5 years. 

 
Varied in 
simulations 

 Total number of sequences 
sampled 

1600 or 3600, corresponding to 8% and 16% sequence coverage 
in the last year of the simulation. In comparison to the large 
sequence data sets that are available for concentrated epidemics in 
Europe or North America, these lower values reflect challenges in 
achieving high sequence coverage where large populations are 
infected. 

Varied in 
simulations 

 Proportion of sampled 
sequences that are obtained 
after intervention start in 
2015. 
 

50% or 85%, corresponding to strong increases in sequence 
coverage after intervention start as expected in trial settings (10-
12). 

Varied in 
simulations 

Ancestral relationships of HIV-1 viruses  

The topology of viral phylogenies does not necessarily correspond to the transmission tree, especially when viral 
infections persist life-long (13). To allow for such disagreement, we used a particular within- and between host 
coalescent model that is more fully described elsewhere (14, 15). The same model was used in the Village 
simulations. 
 

For each transmission chain, viral phylogenies with branch lengths in calendar time are generated through recursive 
application of a neutral within-host coalescent model. The infection time of the index case is considered as root of 
the within-host phylogeny of the index case, and any onward transmission events or sampling events as tips. Under 
these tip and date constrains, the within-host phylogeny of the index case is simulated assuming an increasing 
effective population size. For each new infection, the process is repeated and the within-host phylogenies of newly 
infected individuals are concatenated to the corresponding transmission tips of their transmitter. The model assumes 
that a single transmitted virion leads to clinical infection of the newly infected individual. For each transmission 
chain, the simulation produces a dated viral phylogeny that is rooted at the index case and has as tips the sampling 
times of all individuals in the same transmission chain that are sampled. 
 
The sub-trees that correspond to each transmission chain were concatenated to one multi-furcating root in order to 
obtain a single tree. For each sub-tree, the branch length of each sub-tree to the root reflects the time between the 
root age and the time of infection of the index case of the corresponding transmission chain in the model population. 
  

Within-host population size 
model 

 
The logistic effective population size model is inherited from 
BEAST, BEAST::LogisticGrowthN0, with parameters 
N0tau=1,  r=2.851904, v.T50=-2. These parameters were chosen 
so the final effective population size is broadly similar to 
estimates typically obtained with a BEAST Skyline model (16). 
See figure S11. 

 

Assumed 

 Transmission bottleneck 
size 
 

One virion transmitted. Assumed 
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 Age of multi-furcating root Set so that the root age corresponds to estimated dates of origin of 
subtype C virus in South Africa (17). 
 

Empirical 

Sequence evolution  

Viral sequences were simulated along the viral tree from a starting sequence.  
 
To this end, branch lengths of the tree were first translated from calendar time to average number of substitutions per 
site per year. The evolutionary rate model included two components to reflect differences in evolutionary rates  
along transmission and non-transmission lineages (18, 19). Because one sequence is sampled per individual under 
the Regional model, non-transmission lineages correspond to the part of tip branches that correspond to viral 
evolution within sampled individuals. All other branches are part of transmission lineages. Evolutionary rates were 
drawn from two rate models of transmission and non-transmission lineages, and multiplied with branch lengths in 
units of calendar time to obtain branch lengths in units of average number of nucleotide substitutions per site per 
year.  
 
The starting sequence, from which all viral sequences were simulated, was obtained through ancestral state 
reconstruction of full-genome HIV-1 subtype C sequences. 
 
Viral sequences were simulated for the gag, pol and env genes from the starting sequence under a codon-based 
GTR+G sequence evolution model for each gene. The simulated gag gene was 1440 nucleotides long, the pol gene 
2844 nucleotides, and the env gene 2523 nucleotides.   
  

Evolutionary rate of 
transmission lineages 

 
Sampled from lognormal density with mean evolutionary rate 
0.0022 and standard deviation (on the log scale) 0.3. 
Parameterized from phylogenetic analyses of subtype C sequences 
from southern Africa. See figure S12. 

 
Empirical 

 Evolutionary rate of non-
transmission lineages 

Sampled from lognormal density with mean evolutionary rate 
0.0044 and standard deviation (on the log scale) 0.5. Set to twice 
the rate of transmission lineages (18, 19). See figure S12. 

Assumed 

 Nucleotide substitution rates Informed from phylogenetic analyses of subtype C sequences 
from southern Africa. See figure S13. 
 

Empirical 

 

 

Table S2 Model components and assumptions of the Village Model.  
 
Model parameters 

 
Choice of parameter values 

 
Type of 
evidence 
 

Demographics  
Age is not explicitly modelled. Individuals enter the modelled population at ‘birth,’ already sexually mature, and 
leave the population when they die, either from disease related mortality or other reasons. The overall population is 
slowly growing in size. 
  

Population growth 
 

 
Population growth was set at 1%/year to achieve 
incidence/prevalence comparable to a small Ugandan fishing 
village (20, 21). 
 

 
Calibrated 

Sexual partnerships 
Individuals are in a sexual partnership with one other individual. Partnerships are formed at ‘birth’ and last until the 
death of either partner. No partner switching is modelled. Individuals form partnerships assortatively based on risk 
group, and the frequency of extra-partner contacts is also determined by risk group. Sex workers do not form 
partnerships.  
  

Sexual risk behavior 
 
3 risk group categories  

 
Assumed 
 

 Proportion in risk group 
when entering population 
 

Men: High: 50% / Low: 50%; Women: High: 47% / Low: 47% / 
Sex Worker: 6%. 

Assumed  

 Mixing between risk groups All partnerships are within the same risk group. 50-80% of 
contacts are with partner (if present); remaining contacts are 
weighted by risk group (ex: high risk more likely to contact other 
high risk and to contact sex workers)  
 

Assumed 
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 Partnership duration Partnership lasts until the death of a partner 
 

Assumed 

Viral Introductions 
The epidemic begins with 1 infection in year 0. In simulations where imported sequences were included, this initial 
infection is also the ancestor of the ‘imported’ sequences. Viral introductions from outside of the focal population 
occur stochastically throughout the simulation. 
  

Seed cases 
 
One female sex worker is infected at year 0, who automatically 
infects the populations outside the focal population, where the 
strain can evolve independently. HIV-1 transmission occurs from 
this point onwards. 
 

 
Assumed 

 Proportion of viral 
introductions  
 

Half of the simulations had no imported sequence migration. In 
simulations where this was included, 20% of transmissions were 
descendants of imported sequences by the end of the simulation. 
 

Varied in 
simulations 

HIV-1 infection  
HIV-1 negative individuals are exposed to risk of infection when they make a serodiscordant contact, either with 
their partner or with another individual. Transmission risk is dictated by stage of infection and set-point viral load, 
with acute stage and higher viral loads conferring higher transmission risk. If the HIV-1 infected individual is on 
ART, transmission does not occur. Individuals also only become infectious 2 weeks after infection.  
  

Set-Point Viral Load Value 
 

 
4.5 log10 copies/mL, based on mean of subtype C infected 
individuals in the UK HIV epidemic 
 

 
Empirical 

 Duration of early 
transmission phase (months) 
 

3 months Assumed 

 Probability of transmission  Values based on equations given in (22), based on viral load and 
whether in acute stage. Divided by 100 to convert to per-act rather 
than per-year risks.  

Empirical 

 Relative increase in 
transmission probability 
during early transmission 
phase 
 

0 (when ~4% of transmissions early) and 12.5 (when ~20% of 
transmissions early), value from (22). 
 

Varied in 
simulations 

Intervention  

No intervention or treatment is available before year 40. After year 40, ART is provided to approximately 20% of 
the population, including all sex workers. All individuals on ART are immediately fully suppressed, with viral load 
reduced to 50 copies/mL. ART is permanent (there is no loss to follow-up). As viral load determines disease 
progression, these individuals live much longer than individuals not on ART. 
 
  

Relative reduction in 
susceptibility when on ART 
 

 
0.005 from (22). 

 
Empirical 

 Relative increase in ART 
uptake in the ‘fast’ ART 
simulations 
 

1.49 Assumed 

Sequence Sampling  
Since year 40, sequences were randomly sampled at some point after acute infection. Sampling was done after the 
simulation was complete, with either 25% or 50% of the total number of individuals HIV+ at any time between 
years 40 and 45, with approximately the same number of individuals sampled each year.  
In simulations that were released as sequences only, 42 individuals were also sampled from the pre-intervention time 
period to replicate limited availability of older samples and to aid in phylogenetic reconstruction.  
 
  

Duration of sampling after 
intervention start. 
 

 
3 years or 5 years. 

 
Varied in 
simulations 

 Total number of sequences 
sampled 

Between 638 and 1996, corresponding to 25% and 50% of the 
total number of infected individuals in the last 5 years of the 
simulation. This represented a situation where a small population 
was intensively sampled for the duration of an intervention, 
simulating a ‘best possible’ scenario where high sequence 

Varied in 
simulations 
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coverage was available.   
 

 Proportion of sampled 
sequences that are obtained 
after intervention start in 
year 40. 
 

100% in all simulations released as phylogenies. 95% in the four 
simulations released as sequences, corresponding to strong 
increases in sequence coverage after intervention start as expected 
in trial settings (10-12). 

Varied in 
simulations 

Ancestral relationships of HIV-1 viruses  

The topology of viral phylogenies does not necessarily correspond to the transmission tree, especially when viral 
infections persist life-long (13). To allow for such disagreement, we used a particular within- and between host 
coalescent model that is more fully described elsewhere (14, 15). The same model was used in the Regional 
simulations. 
 

For the transmission chain, viral phylogenies with branch lengths in calendar time are generated through recursive 
application of a neutral within-host coalescent model. The infection time of the index case is considered as root of 
the within-host phylogeny of the index case, and any onward transmission events or sampling events as tips. Under 
these tip and date constrains, the within-host phylogeny of the index case is simulated assuming an increasing 
effective population size. For each new infection, the process is repeated and the within-host phylogenies of newly 
infected individuals are concatenated to the corresponding transmission tips of their transmitter. The model assumes 
that a single transmitted virion leads to clinical infection of the newly infected individual. For the transmission 
chain, the simulation produces a dated viral phylogeny that is rooted at the index case and has as tips the sampling 
times of all individuals that are sampled. 
 
As all transmissions in the simulation descend from a single ancestral infection, there is only one transmission chain, 
and all generated sequences naturally coalesce to one ancestral sequence. 
 
  

Within-host population size 
model 

 
The logistic effective population size model is inherited from 
BEAST, BEAST::LogisticGrowthN0, with parameters 
N0tau=0.00593,  r=2.851904, v.T50=-2. See figure S11.  

 

Assumed 

 Transmission bottleneck 
size 
 

One virion transmitted. Assumed 

 Age of multi-furcating root Set so that the root age corresponds to estimated dates of origin of 
subtype C virus in South Africa (17). 
 

Empirical 

Sequence evolution  

Viral sequences were simulated along the viral tree from a starting sequence, which was obtained through ancestral 
state reconstruction of full-genome HIV-1 subtype C sequences from southern Africa by Gonzalo Yebra.  
 
Each viral phylogeny was run through piBUSS three times, once each for gag, pol, and env. All parameters used to 
simulate the sequences were taken from BEAST analysis of full-genome HIV-1 subtype C sequences from Southern 
Africa.   
 
Viral sequences were simulated for the gag, pol and env genes from the starting sequence under a codon-based 
GTR+G sequence evolution model for each gene. The simulated gag gene was 1479 nucleotides long, the pol gene 
2999 nucleotides, and the env gene 2507 nucleotides.   
  

Nucleotide substitution rate 
gamma distribution shape 
parameter 
 

 
Codons 1&2: 7.743; codon 3: 11.688 
 

 
Empirical 

 Nucleotide substitution rate 
- env 

Sampled from gamma distribution with mean evolutionary rate for 
codons 1&2: 2.98E-3 and codon 3: 5.52E-3, both with standard 
deviation 9.49E-7 
 

Empirical 

 Nucleotide substitution rate 
– gag/pol 

Sampled from gamma distribution with mean evolutionary rate for 
codons 1&2: 1.49E-3 and codon 3: 2.76E-3, both with standard 
deviation 4.75E-7 
 

Empirical 

 Transition/transversion ratio Codons 1&2: 0.139; codon 3: 0.765 
 

Empirical 

 10 
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Table S3 Responses to the Phylodynamic Methods Comparison Exercise 
Simulation 
model 

Data set Responses 

  Team 
Cambridge 

Team 
Cambridge-
London 

Team 
Basel-  
Zürich§ 

Team 
London 

Team 
Vancouver§ 

  (Total responses to the 5 reporting variables for each data set) 
Regional      
 D 0 0 0 5 5 * 
 C 0 0 0 5 5 * 
 A 0 0 0 5 5 * 
 B 0 0 0 5 5 * 
 O 0 5 5 5 0 
 T 0 5 5 5 0 
 S 0 5 5 5 0 
 I 0 5 5 5 0 
 R 0 4 5 5 0 
 Q 0 5 5 0 0 
 G 0 5 5 5 0 
 N 0 5 5 5 0 
 F 0 5 5 5 0 
 L 0 5 5 5 0 
 J 0 5 5 5 0 
 P 0 5 5 0 0 
 H 0 5 5 5 0 
 K 0 4 5 5 0 
 E 0 5 5 0 0 
 M 0 5 5 5 0 
Village      
 3 3 5 5 5 5 
 2 3 5 5 5 5 
 1 3 5 5 5 5 
 4 3 5 5 5 5 
 5 0 5 5 5 5 
 11 0 5 5 5 5 
 8 0 5 5 5 5 
 9 0 5 5 5 5 
 0 0 0 5 5 5 
 6 0 5 5 5 5 
 12 0 5 5 5 2 
 7 0 5 5 5 5 
 10 0 5 5 5 5 

§ Teams Basel-Zürich and Vancouver updated %Incidence estimates (Primary objective 2) after the 
data sets were unblinded. * Where sequences were provided, participants used full viral genomes 
(gag+pol+env) for inference. Team Vancouver also provided estimates based on partial pol sequences 
for two reporting variables on the indicated data sets. 
 15 
 

 

Table S4. Estimating incidence and incidence reduction after a community-based 
intervention with phylogenetic methods on simulated PANGEA data sets. 
 20 

Statistic 
 

 Responses 
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  Team 
Vancouver 

Team 
Cambridge 

Team 
Cambridge-
London 

Team Basel- 
Zürich 

Team London 

Correlation between 
phylogenetic estimates and 
true values  

     

 %Incidence 1 0.15 -0.78 0.91 0.83 0.64 
 Incidence ratio 2 

 
0.66 0.10 0.92 -0.07 0.15 

Bias 
(Overall)  

     

 %Incidence 3 7.90 -1.83 0.35 3.15 0.57 
 Incidence ratio 3 0.36 0.38 0.10 0.17 0.19 
(Village Simulation Model)      
 %Incidence 3 7.75 -1.83 0.30 7.20 0.06 
 Incidence ratio 3 0.50 0.38 0.11 0.21 0.13 
(Regional Simulation Model)      
 %Incidence 3 8.31 - 0.39 0.44 1.06 
 Incidence ratio 3 

 
-0.06 - 0.09 0.12 0.23 

Mean absolute error on the 
log scale for cross-comparison 
(Overall) 

     

 %Incidence 4 1.28 0.83 0.25 0.97 0.56 
 Incidence ratio 4 0.43 0.39 0.14 0.32 0.33 
(Village Simulation Model)      
 %Incidence 4 1.10 0.83 0.21 1.02 0.37 
 Incidence ratio 4 0.50 0.39 0.14 0.26 0.20 
(Regional Simulation Model)      
 %Incidence 4 2.07 - 0.29 0.98 0.71 
 Incidence ratio 4 

 
0.23 - 0.14 0.37 0.42 

1 Denote true % HIV-1 incidence per year after the intervention in PANGEA data set ! by ℎ#, and estimated incidence 
by ℎ#. Outliers with ℎ#>20% were excluded, and the sample Pearson correlation between the remaining ℎ#, ℎ# is 
reported. 2 Denote true incidence ratios after the intervention in PANGEA data set ! by $#, and estimated incidence 
ratios by $#. Outliers with $#>2 were excluded, and the sample Pearson correlation is reported. 3 Bias estimates of 
incidence and incidence reduction was calculated as 1/' ℎ# − ℎ##  and 1/' $# − $##  respectively, after outliers were 
removed as described above. 4 Mean absolute error in phylogenetic estimates of incidence and incidence reductions 
was calculated as 1/' )*+	ℎ# − )*+	ℎ##  and 1/' )*+	$# − )*+	$##  respectively on the log scale for cross-
comparison, after outliers were removed as described above. 
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Table S5. Identification of HIV-1 incidence trends during a community-based 
intervention with phylogenetic methods on simulated PANGEA data sets.  25 

True 
incidence 
trend  

Classified as Responses 

Team 
Vancouver  

Team 
Cambridge 

Team 
Cambridge-
London 

Team 
Basel- 
Zürich 

Team 
London  

  Number (Percentage of responses correctly classified) 

Larger than 
25% reduction 
in incidence 

Declining 4 (44%) 0 (0%) 15 (88%) 9 (47%) 11 (55%) 
Stable 4 1 2 4 9 
Increasing 1 1 0 6 0 
Scenarios not 
evaluated 

14 21 6 4 3 

       
No or smaller 
than 25% 
reduction in 
incidence 

Declining 0 1  1  3  4 
Stable 3 0 5 3 2 
Increasing 2 0 0 1 1 
Scenarios not 
evaluated 

2 6 1 0 0 

 
Table S6. Estimating the proportion of early transmissions before and after a 
community-based intervention with phylogenetic methods on simulated PANGEA data 
sets. 

Statistic Responses 
Team 
Vancouver  

Team Cambridge-
London 

Team Basel- 
Zürich  

Team London 

Correlation between 
phylogenetic estimates and true 
values 
(Village Simulation Model) 1 

    

 Just before the intervention 0.46 0.69 0.69 0 
 After the intervention 0.59 0.83 0.28 0 
Correlation  
(Regional Simulation Model) 1 

    

 Just before the intervention 0.72 0.90 0.20 0.13 
 After the intervention 0.53 0.92 0.49 0.71 
    
Bias  
(Village Simulation Model) 2 

    

 Just before the intervention 3.9 11.8 1.4 -2.7 
 After the intervention 

 
2.7 10.1 -2.6 -5.3 

Bias  
(Regional Simulation Model) 2 

    

 Just before the intervention -13.3 -2.1 -9.4 -19.6 
 After the intervention 

 
-11.9 -1.4 -13.2 -17.2 

Mean absolute error 
(Village Simulation Model)  3 

    

 Just before the intervention 7.3 12.0 5.3 7.0 
 After the intervention 

 
6.2 10.1 6.6 6.8 

Mean absolute error 
(Regional Simulation Model)  3 

    

 Just before the intervention 13.3 4.1 14.8 20.0 
 After the intervention 12.0 3.9 13.2 18.0 

1 Denote true % early transmission just before or after the intervention in PANGEA data set ! by -#, and estimated 
proportions by -#. The sample Pearson correlation is reported. 2 Bias was calculated as 1/' -# − -## . 3 The mean 
absolute error was calculated as 1/' -# − -## . 

 30 
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Table S7. Significant predictors of error in phylogenetic estimates on simulated 
PANGEA data sets. 
 
Primary 
objective 

Covariates varied in the 
simulations  
(values of covariates) 1 
 

Significance of association with error 

Team 
Cambridge-
London  

Team Basel- 
Zürich  

Team London Team 
Vancouver  

(P-value significance codes:  ***: p<1e-3; **: p= 0.001-0.01; - : p>0.05) 
Incidence 
after 
intervention 

True incidence after 
intervention  
(numerical) 

*** - 0.02 - 

Simulation model  
(Village or Regional) ** *** *** 0.01 

Data provided  
(Sequences or trees) - - - - 

Frequency of viral 
introductions  
(<=5% or 20%) 

- *** - - 

Sampling coverage at end 
of simulation 
(standard or high 2) 

0.01 0.02 *** - 

Sampling duration after 
intervention start 
(3 years or 5 years) 

0.04 - - - 

Proportion of sequences 
from after intervention start 
(50% or >80%) 

- *** 0.04 - 

      
Incidence 
reduction 
during 
intervention 

True incidence ratio 
(numerical) - *** *** ** 

Simulation model  
(Village or Regional) - *** 0.03 0.02 

Data provided  
(Sequences or trees) - 0.02 - - 

Frequency of viral 
introductions  
(<=5% or 20%) 

- *** - - 

Sampling coverage at end 
of simulation 
(standard or high 2) 

- - - - 

Sampling duration after 
intervention start 
(3 years or 5 years) 

0.02 - - - 

Proportion of sequences 
from after intervention start 
(50% or >80%) 

- - ** - 

      
Proportion of 
early 
transmissions 
just before 
intervention 

True proportion of early 
transmissions 
just before intervention 
(numerical) 

0.01 *** *** ** 

Simulation model  
(Village or Regional) ** - - - 

Data provided  
(Sequences or trees) 0.017 - 0.03 - 

Frequency of viral 
introductions  
(<=5% or 20%) 

- 0.02 *** - 

Sampling coverage at end 
of simulation 
(standard or high 2) 

- - - 0.04 

Sampling duration after 
intervention start 
(3 years or 5 years) 

- 0.04 - - 
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Proportion of sequences 
from after intervention start 
(50% or >80%) 

- 0.02 - - 

      
Proportion of 
early 
transmissions 
after 
intervention 

True proportion of early 
transmissions 
after intervention 
(numerical) 

- ** *** *** 

Simulation model  
(Village or Regional) ** - - - 

Data provided  
(Sequences or trees) 0.036 - - - 

Frequency of viral 
introductions  
(<=5% or 20%) 

- - - - 

Sampling coverage at end 
of simulation 
(numerical) 

- - - - 

Sampling duration after 
intervention start 
(3 years or 5 years) 

- - - - 

Proportion of sequences 
from after intervention start 
(50% or >80%) 
 

- - - - 

1 For each objective, the error /#	in phylogenetic estimates was defined so that errors were approximately normally 
distributed. Specifically, /# = )*+(2#) − )*+(2#) for estimates 2# and true values 2# of incidence and incidence reduction, 
and /# = -# − -# for estimates -# and true values -# of proportion of early transmissions. As predictors, we considered all 
variables 45 along which the PANGEA data sets were systematically varied in table 3. Variables took on either numerical 
or categorical values as indicated in brackets. We identified those 45 that were significantly associated with /#. 
Specifically, we started with the full regression model containing all 45 as explanatory variables and then sequentially 
dropped predictors according to the generalised likelihood ratio test based on the BIC criterion (function stepGAIV.VR in 
the gamlss R package with 6 = )*+(')). 
2 16% versus 8% in the Regional data sets and 50% versus 25% in the Village data sets. 
 
 35 
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 40 
Figure S1. Viral tree of sampled individuals in a typical Regional simulation.  
1600 (8%) of infected individuals from transmission chains in the Regional 
population were usually sampled. Due to frequent viral introductions, a large number 
of separate transmission chains were present in the modelled population. Each 
transmission chain was collapsed to sampled individuals. Corresponding viral trees 45 
with branch lengths in units of average nucleotide substitutions per site were 
generated under a coalescent model that also accounted for within-host viral 
evolution. Viral trees were connected to a single root sequence, with the root branch 
lengths reflecting time of viral introduction. The resulting tree of a typical Regional 
simulation is shown. Viral sequences were simulated along this viral tree. 50 
 
 
 
 

Typical viral phylogenetic tree of sampled individuals in the Regional simulations

0.02 nucleotide substitions per site
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 55 
Figure S2. Viral tree of sampled individuals in a typical Village simulation. 638 to 1996 
(25%-50%) of infected individuals from the entire transmission chain in the Village 
population were usually sampled. Parts of the entire transmission chain were modelled to 
have taken place outside the Village population. The transmission chain was collapsed to 
sampled individuals. Corresponding viral trees with branch lengths in units of time were 60 
generated under a coalescent model that also accounted for within-host viral evolution. The 
resulting tree of a typical Village simulation is shown. Viral sequences were simulated along 
this viral tree. 
 
 65 
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Figure S3.  Root to tip divergence of a maximum likelihood trees reconstructed from 
viral sequences generated under the Regional model.  One indicator of realism of 
simulated HIV-1 sequences is the degree to which viral evolution can be described by a single 70 
molecular clock. Viral trees were reconstructed with maximum-likelihood methods from 
simulated HIV-1 pol and env genes, and the patristic distances between the root and sampled 
taxa were plotted against sequence sampling dates. A linear regression model was fitted. (A) 
For pol, the mean evolutionary rate was 0.9e-3 subst/site/year. The variance explained by the 
constant clock model was 78 = 31%. (B) For env, the mean evolutionary rate was 1.6e-3 75 
subst/site/year. The variance explained by the constant clock model was 78 = 35%. 
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Figure S4.  Root to tip divergence of a maximum likelihood trees reconstructed from 80 
viral sequences generated under the Village model.  One indicator of realism of simulated 
HIV-1 sequences is the degree to which viral evolution can be described by a single 
molecular clock. Viral trees were reconstructed with maximum-likelihood methods from 
simulated HIV-1 pol and env genes, and the patristic distances between the root and sampled 
taxa were plotted against sequence sampling dates. A linear regression model was fitted. (A) 85 
For pol, the mean evolutionary rate was 1.6e-3 subst/site/year. The variance explained by the 
constant clock model was 78 = 34%. (B) For env, the mean evolutionary rate was 2.6e-3 
subst/site/year. The variance explained by the constant clock model was 78 = 52%. 
 
 90 

A

B
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Figure S5. Signal to noise indicators for estimating incidence reductions on the Regional 
simulations at 8% sequence coverage. Skylines plots were reconstructed under the BEAST 
1.8 Skygrid model to indicate if sufficient signal is present in the simulations to identify 
changes in incidence towards the present. For this analysis, true viral trees as provided for 95 
data sets E-T were used, using a previous multi-locus approach (23). Skyline plots are shown 
for data sets L, M, T (right column), and data sets similar to L, M, T but time homogeneous 
sequence sampling (~75 sequences sampled per year since 2000) (left column). For data sets 
L and T, incidence fell by approximately 60% reduction during the intervention. For data set 
M, incidence declined by approximately 10% as a result of improving standard of care. 100 
Qualitatively, these differences are visible in the Skyline plots under time homogeneous 
sequence sampling (left column). However, under rapidly increasing sampling as in the 
released data sets, these differences appear confounded (right column). 
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 105 
Figure S6. Signal to noise indicators for estimating the proportion of early transmission 
on the Regional simulations. Phylogenetic methods for estimating the proportion of early 
transmissions make use of information in branch length distributions, with shorter branches 
indicating faster transmission from individuals in early stages of infection. We report 
population-level indicators of differences in branch length distributions for the 10% and 40% 110 
Acute scenarios in the Regional simulations. Each line represents empirical cumulative 
distribution functions of a particular indicator, calculated on one simulation. Simulations are 
grouped into 10% and 40% Acute scenarios (darker and lighter lines) and intervention 
scenarios (color), to visualize signal versus noise. (A) Empirical CDF of the generation time 
distribution, among the subset of sequenced individuals. The generation time of sequenced 115 
individual was the time from infection of his transmitter to infection of the sequenced 
individual. High and low %Acute scenarios are clearly distinct from each other. The 
generation time was not known by participants. (B) In the simulations, generation times are 
reflected in the genetic distance between transmitters and recipients along the tree. However, 
not all transmitters appeared in the sequence data set. As a proxy, we considered the genetic 120 
distance between newly infected individuals and their genetically closest individual in the 
simulated data set. This proxy reflects information that was available to the participants. On 
average, high and low %Acute scenarios remained different from each other. This analysis 
suggests that some, but not strong, information exists in the Regional data sets for 
differentiating the 10% versus 40% Acute scenarios even at 8% sequence coverage. 125 
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Figure S7. Signal to noise indicators for estimating the proportion of early transmission 
on the Village simulations. Phylogenetic methods for estimating the proportion of early 130 
transmissions make use of information in branch length distributions, with shorter branches 
indicating faster transmission from individuals in early stages of infection. We report 
population-level indicators of differences in branch length distributions for the 5% and 20% 
Acute scenarios in the Village simulations, see also figure S6. Each line represents empirical 
cumulative distribution functions of a particular indicator, calculated on one simulation. 135 
Simulations are grouped into 5% and 20% Acute scenarios (darker and lighter lines) and 
intervention scenarios (color), to visualize signal versus noise. (A) Empirical CDF of the 
generation time distribution, among the subset of sequenced individuals. The generation time 
of sequenced individual was the time from infection of his transmitter to infection of the 
sequenced individual. High and low %Acute scenarios are distinct from each other, although 140 
to lesser extent than for the Regional simulations. (B) In the simulations, generation times are 
reflected in the genetic distance between transmitters and recipients along the tree. We 
evaluated the extent to which the signal in (A) is still present at 25% and 50% sequence 
coverage, after transmission chains were collapsed to sampled individuals (transmitter may be 
lost) and then translated into viral trees. The plot shows, for all data sets, empirical CDFs of 145 
the genetic distances between phylogenetically closest individuals, as a proxy of transmission 
pairs. Unlike in (A), there is no apparent difference in high and low %Acute scenarios.  
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 150 
Figure S8 Estimates of the proportion of early transmissions after the intervention from 
phylogenetic methods on simulated PANGEA data sets. Submitted estimates are shown for 
each PANGEA data set by research team and model simulation (panels) and type of data 
provided (either sequences or the viral phylogenetic tree, color). Error bars correspond to 95% 
credibility or confidence intervals. True values are shown in black. 155 
 
 
 
 
 160 
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Figure S9. Differences in error of phylogenetic estimates obtained from sequence data, 
versus estimates obtained from sequence data and true phylogenetic trees known. 
PANGEA data sets containing sequences or true trees were considered, and paired if the 165 
underlying epidemiological scenario was identical (see x-axis and compare to table 3). For 
each objective, phylogenetic estimates 2# and true values 2# to each of these data sets were 
considered, and the error /# = )*+(2#) − )*+(2#) was computed. The log scale was chosen so 
that errors were approximately normally distributed. The difference in errors /# − /5 between 
paired data sets !, > is plotted for each objective (columns) and each team (rows). Error bars 170 
indicate log transformed 95% confidence intervals; boxplots the distribution of central 
estimates; and significantly non-zero differences are highlighted in orange. Overall, 
phylogenetic estimates obtained from full genome sequence data sets were not significantly 
less accurate compared to estimates obtained with the true phylogenetic trees known (paired t-
test: team Cambridge-London n=16, p=0.07; team Basel-Zürich n=16, p=0.79; team London 175 
n=32, p=0.033; team Vancouver n=13, p=0.87).  
 

Incidence
after intervention

Incidence reduction
during intervention

Proportion of early transmissions
just before intervention

Proportion of early transmissions
after intervention

� ���

� ��
�

� �
�� ��

� �

� �

�

� �
��

�
��

�

�
�

�
�

��

� �

�
�

�
�

�

�

�

�

� ��

�

�

�

��
�

�

� �

� �

�

�

�

�
�

�

�
�

�

�

�

�
�

�

� �

�

�

�

�

−4

−2

0

2

−4

−2

0

2

−4

−2

0

2

−4

−2

0

2

Team
C

am
bridge-London

Team
Basel-Zürich

Team
London

Team
 

Vancouver

01 02 03 04 A B C D 01 02 03 04 A B C D 01 02 03 04 A B C D 01 02 03 04 A B C D

PANGEA data set
(top: data set containing sequences

bottom: paired data set containing trees)

pa
irw

is
e 

di
ffe

re
nc

e 
in

 e
rro

r o
f e

st
im

at
es

ob
ta

in
ed

 fr
om

 s
eq

ue
nc

es
 a

nd
 tr

ue
 tr

ee
s

12 09 11 10 L H R T 12 09 11 10 L H R T 12 09 11 10 L H R T 12 09 11 10 L H R T



 21 

 
 
Figure S10. Accuracy of phylogenetic estimates of the proportion of early transmissions 180 
on simulated PANGEA data sets as a function of sampling coverage. For each PANGEA 
data set, the absolute error in the phylogenetic estimates of the proportion of early 
transmissions from individuals in their first three months of infection is shown by sequence 
coverage at the end of the simulation (panels). Each panel also compares the absolute error in 
estimates for the year just before the intervention (red) to that after the intervention (blue). 185 
Boxplots highlight the median absolute error and the interquartile range. 
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 190 
Figure S11. Within-host effective population size model of the Village and Regional 
simulations. Viral trees were generated under a hybrid within- and between-host coalescent 
model as described in tables S1 and S2, using the logistic effective population size model 
shown in this figure.  
 195 
 
 
 

 
Figure S12. Sampling distribution of evolutionary rates of the Regional simulations. To 200 
simulate viral sequences along viral trees model as described in table S1, overall evolutionary 
rates were sampled from the log-normal distribution models shown in this figure and 
associated with transmission and non-transmission lineages of the viral tree. Sampled rates 
were used to translate branches into units of average substitutions per site per year. 
 205 
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Figure S13. Sampling distribution of relative evolutionary rates and relative substitution 
rates of the Regional simulations. To simulate viral sequences along viral trees model as 
described in table S1, relative evolutionary rates by gene and codon position were sampled for 210 
each transmission chain as shown in this figure. The sampling distributions were obtained 
through BEAST phylogenetic analyses of full-genome HIV-1 subtype C sequences. GTR+Γ 
substitution models were used by gene and codon position, and relative substitution rates 
were sampled in the same manner. In the Village simulation, relative evolutionary rates and 
relative substitution rates were similar. 215 
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Phylogenetic Tools For Generalized HIV-1 Epidemics: Findings from the 
PANGEA-HIV Methods Comparison  

Supplementary Text S2: Information provided to participants – round 1 

 
PANGEA-HIV (Phylogenetics and Networks for Generalised HIV Epidemics in 
Africa) is a major new initiative funded by the Bill and Melinda Gates Foundation to 
generate a large volume of next generation sequence data from African HIV cohorts 
to facilitate the phylodynamic characterization of generalized HIV epidemics. 
 
The PANGEA-HIV Methods Milestone 1 aims to evaluate existing phylogenetic 
methods in their ability to identify recent changes in HIV incidence in order to inform 
HIV prevention efforts in sub-Saharan Africa. Research groups are invited to 
participate in a blinded methods comparison exercise on simulated sequence data sets 
that capture different HIV transmission dynamics in generalized HIV-1 epidemics. 
Secondary aims of the exercise are to evaluate the merits of full genome sequence 
data, and the impact of changing sequence coverage. 
 
With this exercise, PANGEA-HIV aims to direct further methods development in 
collaboration with participating research groups. Collaborative research teams will be 
formed to analyse the approximately 20,000 full genome HIV sequences with 
matched demographic and clinical patient data that are to be generated by PANGEA-
HIV.  

 
The PANGEA methods comparison working group, and the PANGEA Consortium 
Executive group 
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PANGEA – HIV  
PANGEA-HIV (Phylogenetics and Networks for Generalised HIV Epidemics in 
Africa) is a major new initiative funded by the Bill and Melinda Gates foundation to 

1. deliver ~20,000 full length HIV-1 gene sequences along with associated 
clinical and demographic patient covariates from several African cohort and 
study sites: the Botswana Combination Prevention Project (Botswana), the 
Africa Centre for Health and Population Studies at the University of 
KwaZulu-Natal (South Africa), the MRC/UVRI Uganda research unit on 
AIDS (Uganda), the Rakai Health Sciences Programme (Uganda), and 
HPTN071/ Popart (Zambia and South Africa). 

2. direct the further development of phylogenetic and phylodynamic methods to 
address key challenges in measuring, understanding and controlling HIV 
transmission dynamics of generalised HIV epidemics 

 
Central questions to be addressed with existing or new phylogenetic/phylodynamic 
methods in the context of the generalised HIV epidemics in sub-Saharan Africa are 

1. What can be inferred about epidemic dynamics and sexual network 
characteristics from phylogenetic and self-reported epidemiologic data? What 
does that imply for control strategies in local or regional settings where HIV 
prevalence is well in excess of 20% of the adult population? 

2. What are the transmission dynamics of a generalized epidemic and how do 
they differ from those of a concentrated epidemic where data are already 
available? 

3. What are, at the individual level, the characteristics of infectiousness? Can we 
identify individuals at greater risk of transmitting the virus, and should these 
be prioritized for frequent testing and immediate ART? 
 

4. How does Next Generation Sequence HIV full genome data improve the 
inference of transmission dynamics? 

PANGEA Methodology Milestone 1 
Introduction 
Different phylogenetic and phylodynamic methods have been adopted to characterize 
concentrated HIV epidemics in Europe and the US, largely from partial HIV-1 pol 
sequences collected through local, regional or national HIV treatment monitoring 
studies. There is little consensus on the ability of the various methods to accurately 
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analyse declining, stable or increasing HIV epidemics at different scales, both in 
terms of geographical range and epidemic scale. Little is known on the power of the 
various methods in reliably assessing these HIV epidemics from data that differs in 
completeness and may be biased. This is particularly so for the application of these 
methods to HIV next generation sequencing data from generalised epidemics. We 
expect these methods to have - ultimately - profound implications to our 
understanding of HIV-1 transmission and our ability to prevent transmission. It is of 
critical importance to understand - now - the applicability and potential shortcomings 
of these methods to the kind of data that will be generated by the PANGEA 
consortium. 
 

Objectives 
Research groups are invited to participate in a blinded methods comparison exercise 
on simulated sequence data sets that capture different HIV transmission dynamics in 
generalized HIV-1 epidemics. 
 
The primary objective of the PANGEA-HIV Methods Milestone 1 is to evaluate 
existing phylogenetic methods in their ability to accurately and reliably identify 
changes in HIV incidence that might occur over a few years representing a 
community-based intervention in sub-Saharan Africa in the simulation.  
 
Secondary objectives of the exercise are to evaluate  

- improvements in accuracy and power through the use of concatenated HIV-1 
gag, pol and env sequence data as compared to HIV-1 pol sequence data, 

- accuracy and power with respect to different sequence sampling intensities.  

Simulation scenarios 
Generalised HIV-1 epidemics were simulated for a relatively small “Ugandan” village 
population of ~8,000 individuals and a larger “South African” regional population of 
~40,000 individuals from two structurally different, agent-based epidemiological 
models. Different incidence scenarios and contamination scenarios (source cases from 
outside the study population) were simulated. Different proportions of the population 
were sampled. Each of these scenarios is tagged with a unique identifier (sc[A-Z]). 
Further details on the simulated data are available below. 
 
Each data set consists of several hundred simulated HIV-1 subtype C viral sequences, 
comprising gag, pol and env sequences. Several highly variable genome regions were 
excluded in the simulation. The label of each sequence contains additional 
information on the individual ID, date of sequence sampling, date of birth if available, 
and gender. 
 
For the “village” simulation, each scenario contains sequences from a short time 
period of 3 years. Data sets with the same epi and sample identifiers are sampled from 
the same epidemic at the same sampling fraction. For the “regional” simulation, each 
scenario contains sequences sampled for a longer time period spanning 40 years. 
Scenarios differ in HIV-1 incidence dynamics from a time point after the year 2000. 
20 replicate data sets using different random number seeds (rep[1-20]) were generated 
to evaluate power.  
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Evaluation criteria 
We ask participating research groups to address, where possible, the following 
questions.  
 
For each scenario of the village simulation, 

• Was the epidemic growing, stationary or declining?  
• If the epidemic was not stationary, what was the growth / negative growth 

rate? 
• What is the proportion of annual new HIV infections relative to the population 

at risk of HIV infection? 
 

For each scenario and each replicate of the regional simulation, 
• Was the epidemic growing, stationary or declining by the end of the 

simulation?  
• In which calendar year did incidence start to change? 
• If the epidemic was not stationary, what was the growth / negative growth rate 

by the end of the simulation? 
• What is the proportion of annual new HIV infections relative to the population 

at risk of HIV infection by the end of the simulation? 
 
Comparing scenarios of the village simulation with the same epi and sample 
identifier, 

• How large is the relative change in incidence between scenarios? 
 
Comparing scenarios of the regional simulation, 

• How large is the relative change in incidence by the end of the simulation 
between the stationary scenario(s) and the changing incidence scenario(s)? 

 
Please use the PANGEAHIVsim_EvaluationSheet to return your responses (on 
Dropbox). Where possible, please conduct two analyses, the first using the 
concatenated gag+pol+env genome and the second using only the pol gene.



Research timeline and outputs 
• 7th November 2014 

Deadline for early research reports. Using the PANGEAHIVsim_Report 
document on Dropbox as a template, please describe briefly the methods you 
are using or have developed and provide a short summary of your preliminary 
findings on up to 2-3 pages. Feedback to / from participating research groups 
as needed.. 

• 2nd December 2014 
Workshop to compare and consolidate initial results in London, UK. 
Participating analysis groups to give summaries of progress and feedback 
regarding additional simulations.   

• End December 2014 
Deadline for submission of analyses. The PANGEA steering committee will 
consolidate and communicate the findings jointly with the participating groups 
to report to the Bill and Melinda Gates foundation, and in a publication. 

• 16th May 2015  
Satellite meeting to bring together final results of simulation based 
collaboration at HIV Dynamics and Evolution meeting in Budapest, Hungary. 

PANGEA-HIV methods comparison working group 
In alphabetical order 
Anne Cori ¶, Christophe Fraser ¶, Matthew Hall *, Emma Hodcroft *, Andrew Leigh 
Brown *, Mike Pickles ¶, Andrew Rambaut *, Manon Ragonnet-Cronin *, Oliver 
Ratmann ¶  
*University of Edinburgh, United Kingdom 
¶Imperial College London, United Kingdom 
 
The data were generated by  

- “African village” simulation: Emma Hodcroft 
- “South African”-like regional simulation: Anne Cori, Mike Pickles 
- HIV-1 gag, pol and env genome sequences: Matthew Hall, Oliver Ratmann 

 

 



PANGEA Methodology Milestone 1 – Further details 
South African regional simulation 
The “South African” regional simulation scenarios were generated under an agent-
based epidemiological model that has been developed as part of the HPTN 071 / 
PopART community randomized trial in South Africa and Zambia. 
 
The epidemiological simulation starts in 1975 and ends in 2020. Individuals are 
stratified by gender, age, and level of sexual risk. Partnerships form and dissolve, with 
partner acquisition and concurrency depending on the sexual risk category. HIV 
transmissibility varies over the natural history of HIV by CD4 stages, acute/chronic 
HIV infection, circumcision status and condom use. Individuals within the simulated 
region have sexual partnerships with individuals outside the simulated region. 
 
The viral molecular genetic simulation turns generated transmission chains into 
multiple phylogenies under a coalescent model that has within-host and between-host 
evolutionary components. The tips of the phylogeny correspond to sampling events. 
For each phylogeny, root sequences were generated from real sequences in the Los 
Alamos sequence database. Tip sequences were generated along the simulated 
phylogeny under a GTR site substitution model for the following genomic regions 
1. gag: p17 start to pol PROT start; length 1440 nucleotides. The simulated gag 
gene does not include the last 14 amino acids of p6, due to the overlap with pol. 
2. pol: PROT start to Integrase end; length 2844 nucleotides.  
3. env: CDS signal peptide start to gp41 end; length 2523 nucleotides.   
 
Three epidemiological scenarios A, B, C are generated, which differ in HIV-1 
incidence dynamics from a time point after the year 2000. The following patient 
metavariables are available: Gender, Date of Birth (DOB), Date of Death (DOD), 
Time of sequence sampling (TIME_SEQ), CD4 count at time of sequence sampling 
(CD4_SEQ), Infected within one year of sequence sampling 
(INCIDENT_WITHIN1YEAR_SEQ). 
 
Approximately 1,000 viral sequences are randomly sampled from HIV infected 
individuals between 1980 and 2020. Over time and across scenarios, the fraction of 
sampled sequences changes. Evolutionary simulation parameters are held fixed across 
scenarios. 
 
FAQ 

1. How does the population size change over time?  
The population size follows South African census estimates. In 1980, the 
population is a bit smaller than the census estimate, closer to ~ 20 million. 

2. Are there multiple introductions at the start of the simulation in 1975? 
There are multiple introductions from outside the 'region', including the 
baseline year 1975. We generated the starting sequences based on 
phylogenetic estimates of the HIV introduction into South Africa, and expect 
TMRCA’s before 1975. 

3. Are the viral lineages recombinating? 
No, they are not – phew. J 

4. Is there ART in the model? 
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Changing ART coverage is implicitly accounted for through changing 
transmission intensities. 

5. What has changed between the October and November simulations?  
We changed the way the sequences were sampled as the specification changed 
to include CD4 counts. So, different individuals with different population 
identifiers are now sampled. The epidemic model parameters remained exactly 
the same. 
 

African Village simulation 
For this scenario, an HIV epidemic was simulated in a population of ~8,000 
individuals using an individual-based model from first introduction until incidence 
stabilised. The simulations were run for 70 years. Partnerships and contact rate 
depend on the gender and risk group of the individuals, with HIV transmissibility 
varying through acute, chronic, and AIDS stages. Individuals may have contact with 
individuals from villages outside the focal population.  
 
Three similar HIV epidemic scenarios were simulated. From each simulation, samples 
were taken during 3 different time periods each lasting 3 years. Each of these time 
intervals corresponds to a period of increasing, decreasing or stationary incidence 
dynamics. Two different  sampling fractions are represented among the simulations, 
with one of the 3 scenarios sampled at both fractions leading in total to 9 scenarios A, 
B, …, I. 
 
The simulation is set to keep the population approximately constant. During the peak 
years of the epidemic the population declines by about 1% per year.  
 
Participants will notice that the sample times for all scenarios have been blinded. 
First, meaningless years were used to avoid preconceived bias about what was 
happening in the HIV epidemic in Africa at any given real date. Second, the sample 
dates for each time point have been adjusted to avoid bias based on the relative timing 
of the samples in each.  As in real life, participants do not know beforehand the 
current dynamics of the epidemic.  
 
Because of this, combining the data from any of the separate samples will give 
erroneous results.  
 
Each sequence is a concatenated sequence of gag, pol, and env. Gag runs from 1-
1479bp, pol from 1480-4479, and env from 4480-6987. Each sequence is labelled 
with the user ID, gender, and sample date (in decimal-year format). User IDs are 
randomly assigned and meaningless.   
 



Phylogenetic Tools For Generalized HIV-1 Epidemics: Findings from the 
PANGEA-HIV Methods Comparison  

Supplementary Text S3: Information for participants – round 2 

PANGEA-HIV (Phylogenetics and Networks for Generalised HIV Epidemics in Africa) is a 
major new initiative funded by the Bill and Melinda Gates Foundation to generate a large 
amount of next generation sequence data and to provide phylogenetic tools to measure the 
impact of HIV prevention efforts in generalized epidemics in sub-Saharan Africa. 
 
Research groups are invited to participate in a blinded methods comparison exercise on 
simulated HIV sequence data sets to test the performance of current phylogenetic methods 
before their application on real data.  
 
The PANGEA-HIV Methods Milestone 1 aims to evaluate current phylogenetic methods in 
their ability to identify recent changes in HIV incidence and the proportion of transmissions 
that originate from individuals in early HIV infection. Secondary aims of the exercise are to 
evaluate the merits of full genome sequence data, the impact of sequence coverage, and the 
impact of the proportion of transmissions originating from outside the study area. The 
simulation scenarios are challenging and capture detailed aspects of HIV transmission 
dynamics and intervention efforts that are typical for sub-Saharan Africa. 
 
Based on the outcomes of this exercise, collaborative research teams will be formed to 
analyse the full genome HIV that are to be generated by PANGEA-HIV.  

 
The PANGEA methods comparison working group, and the PANGEA Consortium Executive 
group 



 

PANGEA – HIV  
PANGEA-HIV (Phylogenetics and Networks for Generalised HIV Epidemics in Africa) is a 
major new initiative funded by the Bill and Melinda Gates foundation to 

1. deliver a large volume of full length HIV-1 gene sequences along with associated 
clinical and demographic patient covariates from several African cohort and study 
sites: the Botswana Combination Prevention Project (Botswana), the Africa Centre 
for Health and Population Studies at the University of KwaZulu-Natal (South Africa), 
the MRC/UVRI Uganda research unit on AIDS (Uganda), the Rakai Health Sciences 
Programme (Uganda), and HPTN071/ Popart (Zambia and South Africa). 

2. direct the further development of phylogenetic and phylodynamic methods to address 
key challenges in measuring, understanding and controlling HIV transmission 
dynamics of generalised HIV epidemics 

 
PANGEA-HIV aims to address the questions  

1. What can be inferred about epidemic dynamics and sexual network characteristics 
from phylogenetic and self-reported epidemiologic data? What does that imply for 
control strategies in local or regional settings where HIV prevalence is well in excess 
of 20% of the adult population? 

2. What are the transmission dynamics of a generalized epidemic and how do they differ 
from those of a concentrated epidemic where data are already available? 

3. What are, at the individual level, the characteristics of infectiousness? Can we 
identify individuals at greater risk of transmitting the virus, and should these be 
prioritized for frequent testing and immediate ART? 
 

4. How does Next Generation Sequence HIV full genome data improve the inference of 
transmission dynamics? 

PANGEA HIV Methods Milestone 1 

Introduction 
Phylogenetic methods have been widely applied to characterize concentrated HIV epidemics 
such as Europe and the US, but not in the context of generalized HIV epidemics in sub-
Saharan Africa. These analyses have been based on partial HIV sequence data, but not on full 
genome sequence data. It is not known how current methods are best scaled to full genome 
sequence data, and if they can accurately uncover aspects of HIV transmission dynamics from 
generalized HIV epidemics under typical sequence sampling conditions. We expect these 
methods to have - ultimately - profound implications to our understanding of HIV-1 
transmission and our ability to prevent transmission. It is of critical importance to understand 
- now - the applicability and potential shortcomings of these methods to the kind of data that 
will be generated by the PANGEA consortium. 
 
To assess the performance of current phylogenetic methods in a controlled setting, the 
PANGEA HIV methods comparison working group implemented two highly detailed 
epidemiological and evolutionary models of generalized HIV epidemics to simulate full 
genome HIV sequences and phylogenetic trees. The simulation scenarios are designed to 
capture central aspects of partnering HIV prevention study sites, e.g. the Treatment as 
Prevention (TasP) trial in South Africa.  

Objectives 
Research groups are invited to participate in a blinded methods comparison exercise on 
simulated sequence data sets and simulated phylogenetic trees to address the following 
specific objectives. 
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Primary objectives  
To evaluate existing phylogenetic methods in their ability to measure  
 

1. changes in HIV incidence that might occur over a few years representing a 
community-based intervention in sub-Saharan Africa in the simulation. The outcome 
measure is annual HIV incidence in % of the number of individuals that are at risk of 
HIV infection. 
 

2. the proportion of HIV transmissions arising from individuals in early HIV infection at 
the start of the community intervention. The outcome measure is the proportion of 
new HIV cases from those in early HIV infection in the year before the start of the 
community intervention.  

 
Secondary objectives  
To evaluate 

3. improvements through the use of concatenated HIV-1 gag, pol and env sequence data 
as compared to HIV-1 pol sequence data. The outcomes measure is the accuracy in 
answering the primary objectives. 

4. the impact of sequence sampling coverage. The outcomes measure is the accuracy in 
answering the primary objectives. 

5. the impact of the proportion of transmissions that occur from outside the study area. 
The outcomes measure is the accuracy in answering the primary objectives. 
 

Overview of simulation models 
Generalised HIV-1 epidemics were simulated for a relatively small “Ugandan” village 
population of ~8,000 individuals and a larger “South African” regional population of ~80,000 
individuals from two structurally different, agent-based epidemiological models.  
 
The regional simulation captures individual-level HIV transmission dynamics in a larger 
regional population that is broadly similar to a site (cluster) of the HPTN071/PopART HIV 
prevention trial in South Africa. Standard of care improved according to national guidelines 
over time. In a subset of simulations, an additional comprehensive HIV prevention 
combination package started in 2015 for three years, broadly similar to the 
HPTN071/PopART intervention. Since 2015, the population is monitored more actively, 
resulting in a moderate sampling coverage at a large scale (<10% of the infected population). 
Contamination through transmission from outside the regional area occurs in the range of 
available estimates for sub-Saharan Africa. More information is available in the appendix 
‘Regional simulation’. 
 
The village simulation captures individual-level HIV transmission dynamics in a small village 
population. An intervention campaign started at some point after the epidemic peaked, and 
was followed for a long period of time. Some time after intervention was started, the 
simulated campaign was intensely monitored for three years, resulting in a relatively high 
sampling coverage at a small scale (>10% of the infected population). There is no additional 
intervention. Contamination through transmission from outside the village area is minimal. 
More information is available in the appendix ‘Village simulation’. 

Overview of simulation scenarios 
Data sets were simulated from both models. Phylogenetic inference is often computationally 
expensive. To ease the computational requirements, the simulated phylogeny is provided for a 
subset of simulations that is of secondary importance. To address the primary objectives, 
parameters relating to HIV transmission dynamics and the efficacy of the prevention 
campaigns were varied for each model. Sequence data was generated. To address the 
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secondary objectives, parameters relating to the sampling frame and the proportion of 
transmissions from outside the study area were varied. Phylogenies were generated. 
Additional data for each sequenced individual, and additional population surveys on the 
course of the HIV epidemic until 2015 are available for each scenario. Please see the 
appendices for further information. 

Primary Evaluation criteria 
We aim to evaluate HIV transmission dynamics around an evaluation period that is close to 
the end of the simulation. For the village simulation, the evaluation period coincides with the 
intensely sampled period (see appendix). For the regional simulation, the evaluation period 
starts in January 2015 and ends one year before the end of the simulation, in almost all cases 
December 2019. 
 
For each data set containing simulated sequences: 

i. During the evaluation period, was incidence stable, declining or increasing? Please 
provide answers in terms of 

‘"#$%&'’, ‘*'+&,-,-.’, ‘,-+/'$",-.’ 
ii. What is the annual % incidence in the last year of the evaluation period? Please 

provide answers in % incidence,  

%1234_6 =
1234_6
84_6

, 
where  #_' is the last year of the evaluation period, 1234_6 is the estimated number of 
new cases in year #_', and 84_6 is the estimated number of sexually active individuals 
that have not been infected until #_'.  

iii. Comparing the year preceding the evaluation period to the last year of the evaluation 
period,  what is the ratio in annual % incidence? Please provide answers in terms of 

9$#,: = %1234_6
%1234_;

 

where #_" denotes the year preceding the study period. 
iv. Was the proportion of transmissions that originated from individuals in early HIV 

infection in the year preceding the evaluation period below 10%, between 10-30%, or 
above 30%? Please provide answers in terms of  

‘ < 10%’, ’10 − 30%’, ‘ > 30%’ 
Here, early HIV infection is understood as the first 3 months after HIV infection. 

v. What is the proportion of transmissions that originated from individuals in early HIV 
infection in the year preceding the evaluation period? Please provide answers in terms 
of 

%B$/&C4_; =
1234_;(E/:F	'$/&C)

1234_;
 

vi. What is the proportion of transmissions that originated from individuals in early HIV 
infection in the last year of the evaluation period? Please provide answers in terms of 

%B$/&C4_6 =
1234_6(E/:F	'$/&C)

1234_6
 

 

Secondary Evaluation criteria 
For each of the above data set, please report the outcome measures in (i) to (vi) above for two 
analyses:  
vii. Using only the pol sequences 

viii. Using the concatenated gag+pol+env sequences. 
 

For each of the data sets containing a simulated phylogeny, please also report the outcome 
measures in (i) to (vi).  
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These simulation scenarios may vary from those used to evaluate the primary objectives in 
terms of  

• The sequence sampling coverage 
• When sequences are sampled during the course of infection 
• The annual proportion of transmissions that originate from outside the study area. 

Other Evaluation criteria 
We encourage participants to fine-tune their phylogenetic methods to address the above 
outcome measures. These will be given preference in the methods comparison, presentations 
and publications. The methods comparison group may consider supplementary outcome 
measures provided by participants, if these can be directly calculated on the simulated data. 
Please note that effective population sizes or reproduction numbers cannot be calculated from 
the agent-based simulations.  

Reporting 
We will make evaluation sheets available as for the training round of the methods comparison 
exercise. 

Thank you 
The PANGEA-HIV methods comparison working group would like to thank all participants 
for their interest and contributions thus far. 

Timelines 
February 2015 Release of simulated sequence data sets and simulated 

phylogenies 
27.02.2015 Presentation of interim results based on the training round at 

CROI 
06.05.2015 Deadline for submission of analyses 
13.05.2015 HIV Dynamics and Evolution 2015, where we will present an 

overview of the results of the methods comparison exercise. 
Individual submissions from participants are encouraged. 

16.05.2015 PANGEA-HIV satellite meeting to present and discuss final 
results of the exercise in detail. All participating teams will 
have the opportunity to present their work. 

 

PANGEA-HIV methods comparison working group 
 
Leads: Christophe Fraser, Oliver Ratmann (Imperial College London); Andrew Leigh Brown, 
Emma Hodcroft (Edinburgh) Contributors: Mike Pickles, Anne Cori (Imperial College 
London); Matthew Hall, Samantha Lycett, Manon Ragonnet-Cronin, Gonzalo Yebra, Andrew 
Rambaut (University of Edinburgh)  
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 5 
We performed our phylodynamic analyses using the add-ons bdsky [2] and SA [3] in BEAST 
v2.0 [1]. We estimated the posterior distribution of the epidemiological parameters using 
fixed trees. In case of sequencing data, we first estimated time trees using RAXML/ExaML 
[4][6] & LSD [5], and then inferred epidemiological parameters in BEAST. 
 10 
Parameter inference 
 
For calculation of epidemiological parameters we assumed the birth-death skyline model [2] 
with sampled ancestors (SA) [3]. The model assumes a transmission rate lambda, removal 
rate without sampling μ and sampling rate Ψ. Upon sampling, an individual is removed with 15 
probability r (called removal probability). It turned out to be crucial to allow for sampled 
individuals to further transmit with some probability (1-r)>0 (the original model in [2] 
assumed r=1). 
 
Under the skyline model, time is partitioned into different intervals. Within each interval, the 20 
parameters are assumed to be constant. Across intervals, the rates may change in an arbitrary 
fashion.  
 
For each interval, we estimate the effective reproductive number R = λ / (μ + Ψr) and the 
becoming-non-infectious rate ! = μ + Ψr at which an infected individual becomes non-25 
infectious. The transmission rate λ is therefore given by R*!, and the sampling proportion is 
Ψ /( μ + Ψ). 
 
We partitioned time into three intervals: 

• The Village data has one interval over the evaluation period and two in the first 40 30 
years, with their lengths being chosen such that there are an equal number of 
branching events in each interval. The data was not informative enough to split up the 
evaluation period into several intervals to gain a higher understanding of what 
happened during the treatment time. We assumed the HKY model for sequence 
evolution for the datasets consisting of sequences.  35 

• For the Regional dataset, time was partitioned following the provided information. In 
particular, for the removal probability r the first interval runs from 1970 until 2004, 
the second until 2015 and the third over the evaluation period, 2015-2019. For the 
sampling proportion R and the becoming-non-infectious rate !, the intervals run from 
1970 to 2000, the second until 2015 and the third over the evaluation period. 40 

 
Sampling proportion 
For the sampling proportion Ψ / (μ + Ψ), we set a prior according to the given sampling 
densities stated in the information for participants, i.e. for villages 0, 1, 2, 3, 4, 9, 10, 11 and 
12 we assumed a uniform prior between 15 - 40% and for villages 5, 6, 7 and 8 between 40 – 45 
100%. For the regional data we used a uniform prior for the sampling proportion between 
5%-10%. 
 
Removal probability - Villages 
The prior distribution for the removal probability r was chosen based on the probability of a 50 
sampled infected individual to be on treatment, and therefore presumed to be non-infectious. 
Using the provided numbers, for the villages, we calculated the ratio of number of patients on 



treatment in year 40 (T40, given in metadata) and the number of infected people at the end of 
year 39 (P39*8000 with prevalence P39 from metadata), r = T40 / P39*8000. For village 0 the 
removal probability r was set 0, as no infected individuals are on treatment. 55 
 
Removal probability - Regionals 
For regionals, we defined r in the middle interval as the number of sampled individuals on 
treatment and sampled before 2015 out of the total number of samples. We defined r in the 
last interval as the number of sampled individuals on treatment and sampled after 2015 out of 60 
all samples. 
 
Prior assumptions for the epidemiological parameters R and ! 
We used a lognormal prior for R (lognormal with mu=0 and sigma=0.75) and ! (lognormal 
with mu=-1 and sigma 0.5) for the villeages and regions.  65 
 
Sensitivity analyses 
To explore sensitivity of our estimates towards prior assumptions, analyses were repeated 
with a wider prior on R and ! for villages (lognormal with mu=0.0 and sigma=1.5), as well as 
with removal probability r=0. To see how sensitive the calculation is to changes in the 70 
sampling proportion, the true sampling proportion (25% and 50% respectively) was used for 
an additional analysis. Results did not change noticeably using these stricter priors (not 
shown). 
 

Assessing criteria i-vi 75 
We used the posterior distributions for R and ! to assess the criteria i-vi of the simulation 
study. 
 
Criteria i: 
When analysing the Village data, we calculated the difference of expected incidence in year 80 
44 (EI44, see Criteria ii) and year 39 (EI39, see Criteria ii). This difference was calculated for 
all values sampled by the MCMC, i.e. we obtained its posterior distribution. The 95% highest 
posterior density (HPD) interval was calculated to get the lower and upper bound for the 
difference. 
 85 
The same calculation was performed on the Regional dataset, using the last year before the 
simulation ends (usually year 2018, except for Region F and O, where it is 2016) and year 
2014. 
 
If the HPD interval contained 0, we report no significant evidence rejecting stable incidence, 90 
if the HPD interval is entirely below 0 we report decreasing incidence, and if the HPD 
interval is above 0 we report increasing incidence.  
 
Criteria ii: 
We calculated incidence and number of susceptible people in year 43 based on our estimates 95 
of R and ! at the end of the evaluation period. We assumed that the total population at the end 
of year 43 is N43 = 8000*1.01^4, based on a population size of 8000 at the end of year 39 and 
a growth rate of 1% per year. The number of infected individuals at end of year 43 is, I43 = 
8000* P39* exp((λ - !)*4), using R = λ/! and ! estimates for the evaluation period and P39 
being the prevalence at end of year 39. Therefore the susceptible population size at the end of 100 
year 43 is S43 = N43 – I43. 
 
The expected incidence in year 44 (EI44) was calculated by subtracting the number of infected 
individuals at the end of year 43 (I43) from the number of infected individuals at the end of 
year 44 (I44), and by adding the number of individuals (out of I43) that became non-infectious 105 



during year 44 (BU44), i.e. EI44 = I44-I43+BU44, with BU44 = I43 (1- e^(- !)). The annual percent 
incidence was calculated via %INCt_e = EI44/S43. 
 
This value EI44/S43 was calculated for each sample of the MCMC, i.e. we obtained its posterior 
distribution. The final value was calculated by taking the mean of all EI44/S43 values. The 95% 110 
HPD interval was calculated to get the lower and upper bound EI44 values.  
 
Criteria iii: 
Now we calculated the ratio Ratio = (EI44/S43) / (EI39/S38), with N38 = 8000/1.01, and I38 = 
8000*P39 * exp(-(λ - !)), where λ and ! result from the middle interval in the skyline model. 115 
This value Ratio was calculated for all values sampled by the MCMC, i.e. we obtained its 
posterior distribution. The final value was calculated by taking the mean of all Ratio values. 
The 95% HPD interval was calculated to get the lower and upper bound Ratio values.  
 

Criteria iv-vi  120 
We addressed criteria iv-vi (proportion of transmissions that originated from individuals 
within their first 3 months of HIV infection) by employing the multi-type birth-death model 
[6]. This model allows us to analyse the data using exactly the same setup as described above, 
but with two different types of infected individuals: acute (within their first 3 months of HIV 
infection) and chronic individuals. This yields separate transmission rates λa and λc for 125 
transmissions caused by acute or chronic individuals, respectively, for each of the three 
intervals. We assume that !a= !c. All priors and interval lengths were set to the priors above, 
and the rate of becoming chronic was set so that individuals remained acutely infected for 3 
months on average.The proportion of transmissions (criteria v & vi) that originated from 
acute individuals is %Early = (fa * λa)/ (fa * λa + fc * λc), where fa and fc are the expected 130 
fractions of individuals in the acute and chronic state, respectively. Criteria iv was assessed if 
the mean of the posterior distribution for Pa was below 10%, between 10-30%, or above 
30%”. 
 

Remarks 135 
A drawback of our approach is that we cannot directly infer incidence / prevalence, but only 
the epidemiological parameters (removal and effective reproductive number). From the 
parameters of the birth-death skyline model (i.e. R and !) we work out (in a slightly ad hoc 
way, as described above) the incidence values. Our model could be used to directly infer 
incidences using particle filtering approaches which remains to be investigated in future work. 140 
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