Quantifying HIV transmission by age from cross-sectional

 viral phylogenetic deep sequence data: a population-based study in Rakai, UgandaOliver Ratmann, Xiaoyue Xi, and contributions from Nicholas Bbosa
PANGEA webinar, April 22020

HIV phylogenetic analysis, KZN, 2014-2015

Figure 2: Maximum likelihood tree for 90 heterosexual transmission clusters
Clusters with a bootstrap support higher than 90% and whose sequences had an intraclade genetic distance of 4.5% or less. 123 women were linked to 103 men in the 90 heterosexual clusters. For better visualisation of the clusters, the tree is represented with proportional branch length transformation. The age (years) of the individuals in each transmission cluster is presented inside the boxes. Grey boxes represent men and red boxes represent women.

HV phylogenetic analysis, KZN, 2014-2015

		Men ($\mathrm{n}=103$)			Total
		$\begin{aligned} & <25 \text { years } \\ & (7.6 \%) \end{aligned}$	$\begin{aligned} & 25-40 \text { years } \\ & (40 \cdot 3 \%) \end{aligned}$	$\begin{aligned} & \text { 41-49 years } \\ & (47 \cdot 2 \%) \end{aligned}$	
	<25 years (22.3\%)	18	37	5	60
	25-40 years (59.8\%)	13	58	21	92
	41-49 years (50.1\%)	2	24	10	36
Total		33	119	36	188

Figure 3: All possible pairings from 90 clusters of men and women stratified by age group
The community-based HIV prevalence in each age group is shown in parentheses.

Association HIV incidence with partner age, primarily Durban area, 2009-2012

TABLE 2. Association Between Age-Disparate Relationship and HIV-1 Infection Within 1 Year

	HIV Infections/ Person-Years	HIV Incidence* (95\% CI)	Univariate Model \dagger HR (95\% CI)	Multivariable Model \ddagger HR (95\% CI)
Primary analysis				
All participants	243/3343.57	7.27 (6.41 to 8.24)		
Primary partner $>5 \mathrm{yrs}$ older				
Yes	67/871.84	7.68 (6.05 to 9.76)	1.10 (0.82 to 1.45$)$	1.17 (0.88 to 1.56$)$
Do not know partner age	5/70.36	7.11 (2.96 to 17.07)	0.97 (0.40 to 2.37)	0.98 (0.40 to 2.39)
No	171/2401.37	7.12 (6.13 to 8.27)	1.00	1.00
Primary partner $>10 \mathrm{yrs}$ older				
Yes	10/160.43	6.23 (3.35 to 11.58)	0.87 (0.46 to 1.64)	1.01 (0.53 to 1.92$)$
Do not know partner age	5/70.36	7.11 (2.96 to 17.07)	0.94 (0.39 to 2.29)	0.94 (0.38 to 2.28)
No	228/3112.78	7.32 (6.43 to 8.34)	1.00	1.00
Participants $<25 \mathrm{yrs}$	172/1877.54	9.16 (7.89 to 10.64)		
Primary partner $>5 \mathrm{yrs}$ older				
Yes	47/480.43	9.78 (7.35 to 13.02)	1.09 (0.78 to 1.53$)$	1.13 (0.80 to 1.59)
Do not know partner age	4/35.30	11.33 (4.25 to 30.19)	1.17 (0.43 to 3.18)	1.13 (0.41 to 3.09)
No	121/1361.81	8.89 (7.43 to 10.62)	1.00	1.00

- VOICE trial, South African sites
- 3789 women, 2143
aged <25
- Suggesting agediscordant relationships may not be driver of epidemic among young women

Incidence estimates may vary by reporting behavior

Association HIV incidence with partner age, KZN, predicted at 2009

- Africa Centre DSS, 2004-2015
- Considering 7251women reporting age of most recent partner

Study objective

- Estimate proportion of infections among women that are attributable to older men using deep-sequence data
- South-eastern Uganda, MRC/UVRI and Rakai

Convenience sample, MRC/UVRI, 2014-2017

Convenience sample, MRC/UVRI, 2014-2017

- 72 source-recipient pairs between men and women
- 22 pairs involving female recipient <25 at enrollment

	Estimated sources of infection among study participants, based on data excluding same-sex pairs* (mean, 95\% credibility interval of posterior density)			
	Men 18-24 years	Men 25-59 years	Women 18-24 years	Women 25-59 years
Recipient				
Women 18-24 years	$34.7 \%(17.1 \%-55.9 \%$	$65.3 \%(44.1 \%-82.9 \%)$	--	--
Women 25-59 years	$27.7 \%(14.1 \%-45.7 \%)$	$72.3 \%(54.3 \%-85.9 \%)$	--	--

Population-based deep-sequence data, Rakai, 2011/08/10-2015/01/30

Population-based deep-sequence data, Rakai, 2011/08/10-2015/01/30

293 phylogenetically strongly supported source-recipient pairs

Rakai study area

- 96 source-recipient pairs involving women <25
- 57 source-recipient pairs with female recipient <25

$$
n=120
$$

$$
n=173
$$

Adjusting for sampling cascade

Fit of statistical flow model

from female to male

$n=120$
from male to female

50% of infections in women attributed to men aged 26-37
50% of infections in men attributed to women aged 23-34

Age of sources by age of recipient

- 15-16 - 16-17 - 17-18 - 18-19 - 19-20 - 20-21 - 21-22 - 22-23 - 23-24 - 24-25
- 25-26 - 26-27 - 27-28 - 28-29 - 29-30 - 30-31 - 31-32 - 32-33 - 33-34 - 34-35
- 35-36 - 36-37 - 37-38 - 38-39 - 39-40 - 40-41 - 41-42 - 42-43 - 43-44 - 44-45
- 45-46 - 46-47 - 47-48 - 48-49 - 49-50

Age difference between source and recipient

Contribution of age-discordant relationships, male -> female

Male -> female transmission

Summary of findings

- Overall, half of all infections among women were attributed to men aged 2637, whereas half of all infection among men were attributed to women aged 23-34.
- However the mean age of the source case depended on the age of the recipient, and on gender. Women aged >35 were typically infected by younger men. Men aged >25 were typically infected by younger women.
- Most young women (aged 15-24) were infected by men who are >5 years older. An estimated 91% of women aged 15 were infected by men >5 years older, which declined to 73% at age 20, and 51% at age 25 .

Youth bulge + rapid increases in prevalence among men and women

RCCS inland communities
Women

Category

- not participated

HIV negative
ART-naive and not sequenced ART-naive and sequence

- on ART

RCCS fishing communities

Acknowledgments

Rakai Health

Sciences
Program
David Serwadda
Fred Nalugoda
Joseph Kagaayi
Godfrey Kigozi
Gertrude Nakigozi
Tom Lutalo
Robert Ssekubugu
Grace Kigozi
Jeremiah Bazaale
Johns Hopkins
Bloomberg School of Public Health
M Kate Grabowski
Ronald Gray
Maria Wawer
Justin Lessler
Caitlin Kennedy
Joseph Sekasanvu

Johns Hopkins

School of Medicine
Aaron Tobian
Larry Chang
National Institute of
Allergy
and Infectious
Diseases
Thomas Quinn
Andrew Redd
Steve Reynolds
Oliver Laeyendecker

Oxford University

Christophe Fraser
Matthew Hall
Chris Wymant
Tanya Golubchik
Lucie Abeler-Domer

MRC/UVRI \&
LSHTM Uganda Research Unit
Nicholas Bbosa
Deogratius Ssemwanga
Aldred Ssekagiri
Yunja Mayanja
Ubaldo Bahemuka
Janet Seeley
Pontiano Kaleebu

University of

Warwick
Simon Spencer
Imperial College

London

Xiaoyue Xi
Melodie Monod
High performance computing center

PANGEA-HIV-II consortium

Christophe Fraser
Mary Kate Grabowski
Deenan Pillay
Andrew Rambaut

Rakai Health Science
 Program Staff and Study participants
 MRC/UVRI Program Staff and Study participants

BILLOMELINDA
GATES foundation

Thank you

Contribution of age-discordant relationships, female -> male

Female -> male transmission

male recipients is older by at least5 years

An intuitive example (1)

An intuitive example (2)

