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Abstract

Studying the evolution of viruses and their molecular epidemiology relies on accurate viral sequence data, so that small
differences between similar viruses can be meaningfully interpreted. Despite its higher throughput and more detailed
minority variant data, next-generation sequencing has yet to be widely adopted for HIV. The difficulty of accurately recon-
structing the consensus sequence of a quasispecies from reads (short fragments of DNA) in the presence of large between-
and within-host diversity, including frequent indels, may have presented a barrier. In particular, mapping (aligning) reads
to a reference sequence leads to biased loss of information; this bias can distort epidemiological and evolutionary conclu-
sions. De novo assembly avoids this bias by aligning the reads to themselves, producing a set of sequences called contigs.
However contigs provide only a partial summary of the reads, misassembly may result in their having an incorrect struc-
ture, and no information is available at parts of the genome where contigs could not be assembled. To address these
problems we developed the tool shiver to pre-process reads for quality and contamination, then map them to a reference
tailored to the sample using corrected contigs supplemented with the user’s choice of existing reference sequences. Run
with two commands per sample, it can easily be used for large heterogeneous data sets. We used shiver to reconstruct the
consensus sequence and minority variant information from paired-end short-read whole-genome data produced with the
Illumina platform, for sixty-five existing publicly available samples and fifty new samples. We show the systematic superi-
ority of mapping to shiver’s constructed reference compared with mapping the same reads to the closest of 3,249 real
references: median values of 13 bases called differently and more accurately, 0 bases called differently and less accurately,
and 205 bases of missing sequence recovered. We also successfully applied shiver to whole-genome samples of Hepatitis C
Virus and Respiratory Syncytial Virus. shiver is publicly available from https://github.com/ChrisHIV/shiver.
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1. Introduction

The genetic sequences of pathogens are a rich data source for
studying their epidemiology and evolution, and provide infor-
mation for vaccine and therapeutic design. In the past decade,
next-generation sequencing (NGS) has transformed genomics,
with decreasing costs and enormous increases in the amount of
data available. Despite the success of NGS in other fields, se-
quencing of human immunodeficiency virus (HIV) is still largely
based on the older method of Sanger sequencing. For example,
on the comprehensive Los Alamos National Laboratory HIV
database (http://www.hiv.lanl.gov/ accessed 11 October 2017), of
the 147,751 samples with platform information, 90.8% were gen-
erated by Sanger sequencing, 6.9% with the Roche 454 platform,
2.2% with Illumina platforms, and 0.02% with the IonTorrent
platform. Breakdowns of these numbers by date and sequence
length are in Supplementary Section S1.

More broadly, NGS has been hugely successful both for se-
quencing samples with no within-sample diversity, and at the
opposite end of the spectrum, for metagenomic studies. In the
first case, any apparent within-sample diversity is attributable
to sequencing error; in the latter case, there is no presumption
that different fragments of sequence in the same sample have
the same origin, and so each fragment is checked against large

databases to catalogue these diverse origins (Kunin et al. 2008;
Thomas, Gilbert, and Meyer, 2012).

HIV is an intermediate case: the long duration of chronic in-
fection coupled with high rates of replication and mutation mean
that a single infection, and hence a single sample, will contain a
diverse collection of related viral particles, frequently called a
quasispecies. The long generation time for HIV transmission, to-
gether with continual within-host evolution, results in large, star-
like phylogenies at the between-host level (Grenfell et al. 2004),
i.e. each individual’s quasispecies is quite distinct from the qua-
sispecies of others. Reconstructing different aspects of these di-
verse quasispecies from reads (fragments of sequence; see Fig. 1)
has proven technically challenging (Beerenwinkel et al. 2012) and
may have hindered the widespread adoption of NGS for HIV. The
complications of working with reads derived from a quasispecies
can be bypassed with single genome amplification (SGA): in SGA,
by limiting dilution, samples are reduced to single-virion aliquots
that are sequenced separately (Simmonds et al. 1990; Palmer
et al. 2005; Keele et al. 2008). However, the costs of using SGA for
large population studies may be prohibitively high.

Here, we present the user-friendly programme shiver for
working with HIV NGS data. Note that a variety of NGS plat-
forms exist, which can be broadly classified into short-read-
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low-error platforms and long-read-high-error platforms (see e.g.
Goodwin, McPherson, and McCombie, 2016); here we focus on
the former. Our programme was developed as part of the
BEEHIVE project (Bridging the Evolution and Epidemiology of HIV in
Europe) in which samples from over 3,000 individuals with
known date of HIV infection are being sequenced to investigate
the viral-molecular basis of virulence (Fraser et al. 2014). The
power of genome-wide association studies (GWASs), and of epi-
demiological analyses e.g. identifying transmission risk factors,
is enhanced by focussing resources on the widest possible pop-
ulation coverage (and so use of SGA is not a priority). We explain
the need for shiver in the following subsection.

1.1 Mapping reads: problems and solutions

The quasispecies in one infected individual can be summarised
by the consensus sequence—the ‘average’ sequence of those
virions sampled, as represented in the reads. Determining the
most common base at each position in the genome, and which
other bases are present and at what frequencies, requires the
reads to be mapped (aligned) to a reference sequence. To what
should they be mapped? Mapping to a reference too far from
the quasispecies’ true consensus leads to biased loss of infor-
mation (Archer et al. 2010; Henn et al. 2012; Iqbal et al. 2012;
McElroy, Thomas, and Luciani, 2014). Like any form of sequence
alignment, mapping relies upon sequence similarity; the more a
read differs from its reference, the less likely it is to be aligned
correctly or at all. This tends to hide differences between the
sample and the reference, giving a consensus genome errone-
ously similar to the reference chosen.

The implications of this problem for downstream sequence
analysis are worrying. Using the same reference for multiple in-
fected individuals will tend to make their consensuses artefac-
tually similar, overestimating proximity in a transmission
network and distorting epidemiological conclusions. Using old
reference sequences to construct new ones biases the new to re-
semble the old, which could distort our picture of evolution and
hinder monitoring of emerging virulent or resistant variants. As
an example, in a survey of env gene diversity in currently circu-
lating viruses for vaccine design, it would be highly undesirable
to artificially bias the reconstructed sequence towards similar-
ity with the standard HXB2 reference virus isolated in 1983.

An example of this biased data loss is shown in Fig. 2, in which
an insertion in the sample is lost because it is missing in the refer-
ence to which the reads were mapped. Reads containing inser-
tions/deletions (indels) are particularly difficult to map correctly
(Li, Ruan, and Durbin, 2008; Ye et al. 2009; McKenna et al. 2010;
Albers et al. 2011). Inaccurate mapping at the sites of indels does
not only result in missing the indel, as here, but can also prevent
any reads from being mapped, or cause bases to be called incor-
rectly due to misalignment. This is an important point: even if the
bases in an insertion are considered uninformative and are
excluded from a particular comparative analysis, for example
phylogenetic inference, it is undesirable that the insertion should
cause missing or incorrect bases at neighbouring sites. Indels are
known to be very common in HIV (Wood et al. 2009), especially in
the env gene (Starcich et al. 1986). To quantify this further, we cal-
culated indel size and position distributions in 3,249 whole ge-
nomes from the Los Alamos National Laboratory HIV database,
shown in Fig. 3.

Figure 1. Interpreting NGS data for HIV. The question mark shows our question here: how best to discover the viral genotype from NGS data despite the high diversity

of HIV between and within hosts?
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The loss of reads during mapping has been shown to be
roughly proportional to the divergence between the true con-
sensus and the reference used (Archer et al. 2010). The bias in
the loss of reads (and the loss of accuracy in their alignment) oc-
curs at different scales. Data are more likely to be lost in
(1) those samples in a dataset that differ more greatly from the
reference used for their mapping; (2) those parts of the genome,
in a single sample, where the sample and reference are most
different; and (3) a subset of genotypes, in a single diverse sam-
ple, that are more different from the reference than the other
genotypes.

This problem means the simplest mapping strategy—using
as a reference some existing, standard genome, even if chosen
specifically for each sample based on the reads—has much
room for improvement. For example one could map once to a
standard reference, call the consensus, then use this as the ref-
erence for one or more rounds of remapping (Willerth et al.
2010; Gibson et al. 2014; McElroy, Thomas, and Luciani, 2014;
Verbist et al. 2014; Ode et al. 2015). Remapping is expected to be
more accurate, because the consensus initially called is ex-
pected to be closer to the true consensus than the standard ref-
erence is. For this to be the case all along the genome however,
reads must map correctly all along the genome in the first step.

If the sample has an indel not present in the reference, inaccu-
rate mapping at the site of the indel may cause it to be missed
when the consensus is called, as in Fig. 2. Remapping is then
doomed to repeat the same error.

To correct for this, between initial mapping to the standard
reference and calling the first consensus, multiple sequence
alignment can be performed with the reads (Archer et al. 2010;
Zanini et al. 2015). This removes some of the bias imposed by
the initial mapping, because while mapping aligns each read to
the reference sequentially and independently, multiple se-
quence alignment with the reads considers how the reads align
to each other. It is then less important that reads map correctly
all along the genome, since realignment may correct misalign-
ment around indels, but the reads do still need to map all along
the genome. If biased data loss leads to a failure of reads to map
at a given point, the missing reads will not shape the initial con-
sensus and remapping to that consensus will not recover them.
For the variable loop regions of HIV’s env gene in particular,
reads from one virus can easily fail to map to another; many ex-
amples of this can be seen in Supplementary Sections S4 and
S5, visible as parts of the genome where reads do map to a refer-
ence tailored to the sample, but not to the closest identified real
reference, resulting in missing sequence in the latter case.

A

B

Figure 2. An example of biased loss of information encountered in our data when mapping to an existing reference. The reads contain a 30 bp insertion relative to the reference.

Correct alignment, shown in the upper panel, would have inserted a 30 bp gap into the reference to accommodate this. What the mapper actually did (lower panel) was to align

part of each read correctly either to the left of the insertion or to the right of it, and discard the rest of the read. ‘Read 1’ and ‘Read 2’ each represent roughly 2,000 similar reads; their

consensus is therefore well supported but misses the insertion. This bias occurred despite the reference having been identified as the closest of 3,249 to this set of reads. Similar er-

rors were made by the mapper’s smalt, BWA, and bowtie, resulting in the same erroneous consensus being called in each case. Bases in the reads that differ from the reference are

shown in blue; the ends of the reads that were discarded during mapping (i.e. not aligned) are shown in grey with strikethrough. This figure corresponds to Position 8450 in Fig. 5.

A B

Figure 3. Quantifying indels in 3,249 whole genomes—those in the 2016 ‘all genome’ group M alignment from the Los Alamos National Laboratory HIV database. We

trimmed both 3’ and 5’ ends of the alignment where sequences align poorly, then considered each of the roughly 5.3 million possible pairs of references therein. For

each pair we calculated the size and position of their relative indels (i.e. taking their relative alignment from the overall alignment, ignoring positions at which both

have a gap). We also considered just the subset of 1,019 subtype B sequences, which is less diverse than group M as a whole but shows similar indel patterns. Left

panel: the distribution of indel sizes. The striking bias towards frame-preserving indels could be biological (frame-shifting indels will generally have a large fitness

cost), artefactual (removal of frame-shifting indels from sequences during analysis before public release, on the assumption that this is sequencing or bioinformatic er-

ror), or a combination of both. Right panel: where in the genome the indels tend to occur. The observed pattern is consistent with purifying selection in pol and diversi-

fying selection in env.
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These problems motivate de novo assembly (hereafter just
assembly). Roughly, this consists of aligning overlapping reads
to each other, tolerating some pre-set level of disagreement be-
tween them to allow for some within-sample diversity or se-
quencing error, iteratively extending using reads overhanging
the edges, finally resulting in a set of sequences called contigs
(see e.g. http://en.wikipedia.org/wiki/Sequence_assembly).
Remapping to contigs (Henn et al. 2012; Yang et al. 2012;
Malboeuf et al. 2013; McElroy, Thomas, and Luciani, 2014; Ode
et al. 2015) settles ambiguity at positions spanned by multiple
contigs which disagree, corrects positions where assembly did
not call the most common base, provides minority variant infor-
mation, and allows greater use to be made of base quality infor-
mation than is typically done during assembly.

However, contigs may differ from the true consensus by
more than just a few SNPs that can be corrected by mapping.
Misassembly may occur, giving contigs supported by a high
depth of reads but whose structure is very different from the
known genome. This can arise in silico (McElroy, Thomas, and
Luciani, 2014), i.e. by misassembly of correct reads; or as a result
of chimeric reads produced during sequencing, due to recombi-
nation during library preparation (Meyerhans, Vartanian, and
Wain-Hobson, 1990; Judo, Wedel, and Wilson, 1998; McElroy,
Thomas, and Luciani, 2014), concatemerisation/ligation
(Croucher et al. 2009), or stem loops of RNA secondary structure
(Malboeuf et al. 2013).

Furthermore, the set of contigs resulting from assembly may
not fully cover the genome. Gaps between contigs can be due to
a total absence of reads there, following sequencing failure or
only a partial genome present in the sample. They can also be
due to the reads being too few (though non-zero), or too diverse,
for successful assembly; in this case, mapping can recover con-
sensus sequence not present in assembly output.

Finally, as the set of reads will generally contain contamina-
tion, so will the set of contigs. These contigs should be identi-
fied and discarded.

To address these problems we developed the tool shiver—
Sequences from HIV Easily Reconstructed—to preprocess and map
reads from each sample to a custom reference, tailored to be as

close as possible to the expected consensus, constructed by cor-
recting contigs and filling in gaps between them with the closest
identified existing reference sequences. We wrote it to be easy to
use, suitable for simple scripted application to large heteroge-
neous data sets, in our population genomics study and elsewhere.

2. Methods
2.1 A summary of the shiver method

The steps in shiver are shown in Fig. 4; see Supplementary
Section S2 for more details.

In summary: paired-end short reads and contigs assembled
from those reads are required as input for each sample; also re-
quired is a set of existing reference genomes, chosen by the
user. Contigs are compared with the existing references using
BLASTN (Altschul et al. 1990), then partitioned into those judged
to be HIV and those judged to be contamination. HIV contigs are
corrected as follows. First, spliced contigs—those concatenating
two separated regions of the genome into a single sequence—
are cut. The motivation for this cutting of contigs is the assump-
tion that HIV does not exhibit major structural variation, e.g.
variation in gene presence/absence or gene order, which is sup-
ported by sequence compendiums to date (http://www.hiv.lanl.
gov/). Second, parts of contigs that did not have a blast hit to
any existing reference are removed. Third, any contig (or part of
a contig) found to be in the opposite orientation to the existing
references is reverse-complemented. The contigs are added to
the alignment of existing references using MAFFT (Katoh et al.
2002), and contigs found to have an overly large internal dele-
tion are split into two separate contigs at that point.

At this point shiver stops to allow a visual check of the
alignment of contigs and existing references. Once it is checked,
shiver continues (all remaining steps in the programme are
performed by the second of two commands needed for full pro-
cessing). From this alignment, the closest existing reference is
identified by comparison with all of the contigs. This is ex-
pected to be a more accurate identification of the closest exist-
ing reference than, for example, finding which existing

Figure 4. A summary of the steps in our method shiver.
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reference most reads match most closely, which gives undue
weighting to regions of the genome where more rounds of am-
plification resulted in an exponentially greater number of reads.
shiver creates a reference for mapping by using contig se-
quence where available, and the closest existing reference to fill
in any gaps between contigs (at parts of the genome where as-
sembly failed). Before mapping, reads are trimmed for low-
quality bases, adapter and primer sequences using
Trimmomatic (Bolger, Lohse, and Usadel, 2014) and fastaq
(https://github.com/sanger-pathogens/Fastaq); contaminant
read pairs are diagnosed as those matching contaminant con-
tigs more closely than the tailored reference, and are removed.
The remaining reads are mapped to the tailored reference. By
default we map using smalt with a minimum read identity (the
fractional agreement between a read and the reference to be
considered mapped) of 70%, independent mapping of mates in
a pair, a maximum insert size of 2,000 bp, and discarding im-
properly paired reads. Optionally, BWA (Li and Durbin 2010) and
bowtie (Langmead et al. 2009) can be used instead of smalt.

Following mapping, each position in the genome is considered
in turn using SAMtools (Li et al. 2009), to find the frequencies of dif-
ferent bases. At positions where some reads have deletions relative
to the mapping reference, we count the frequency of the gap char-
acter together with actual bases. At positions where some reads
have insertions relative to the mapping reference, for the consen-
sus we use the most common insertion size (which may be 0, i.e.
no insertion). By default the most common base is called to give
the consensus; optionally ambiguity codes can be used more read-
ily, when the frequency of the most common base(s) is below a
threshold. A consensus base is only called if the coverage equals or
exceeds a minimum threshold specified by the user, to protect
against the effect of residual low-coverage contaminant reads in
genomic regions lacking genuine HIV reads. By default this is 15,
but this is likely to need adjusting for different datasets. A tool con-
tained in shiver helps the user to explore appropriate values (see
the discussion of LinkIdentityToCoverage.py in Supplementary
Section S3).

By default, once the consensus is called, the cleaned reads
are re-mapped to it (with any missing coverage in the consen-
sus filled in with the corresponding part of the original tailored
reference) for a second iteration of calling the base frequencies
and the consensus. (This is why the shiver reference does not
match the contigs exactly in Fig. 5 and the figures of
Supplementary Sections S4 and S5).

shiver also produces a ‘global alignment’ of all consensuses
it generates by coordinate translation, without need for an
alignment algorithm.

2.2 Running shiver fully automatically

Alternatively shiver can be run from beginning to end without
the break in the middle described above, for applications where
visually checking the contigs is impractical. This is only possible
for samples not requiring contig correction, and does not pro-
duce the global alignment of all samples’ consensuses together.
The different alignment strategy used in this case, and our rec-
ommendation that the contigs be checked instead, are dis-
cussed further in Supplementary Section S2.5.

2.3 Using the shiver code

shiver and its documentation are available at https://github.com/
ChrisHIV/shiver. It was designed to be run in Linux-like environ-
ments, including Mac OS. Once dependent packages are installed,

shiver itself requires no installation: it is a set of executable
scripts. The Genomic Virtual Laboratory (Afgan et al. 2015), pro-
vided for example on the UK Medical Research Centre’s Cloud
Infrastructure for Microbial Bioinformatics (MRC CLIMB) (Connor
et al. 2016), contains all dependencies (except smalt, which is
loaded on MRC CLIMB with the single command brew install

smalt, and otherwise available at http://www.sanger.ac.uk/science/
tools/smalt-0), allowing shiver to be run immediately. The GitHub
repository also contains a platform-independent virtual machine
containing shiver with all of its dependencies pre-installed.

Before processing with shiver, short reads must be assembled
into contigs. This important step, though difficult technically, is
not onerous for the user: our chosen assembler IVA assembles
contigs from reads with a single command from the command
line, and can be run on a virtual machine provided by the Sanger
pathogens group (http://sanger-pathogens.github.io/pathogens-
vm/). The user can use any assembler; others are available in the
Genomic Virtual Laboratory, including SPAdes, Velvet and MIRA,
though currently none designed specifically for viral data.

shiver is run from the command line using three com-
mands. Firstly, a one-off initialisation command:

shiver_init.sh MyInitDir config.sh MyReferences.fasta \

MyAdapters.fasta MyPrimers.fasta

(the slash indicating that one command is here being split over
multiple lines), which sets up an initialisation directory of files
for shiver based on the user’s choice of existing references,
and adapter and primer sequences to remove. Subsequently, for
each sample to be processed, one command blasts, corrects and
aligns the contigs:

shiver_align_contigs.sh MyInitDir config.sh \

MyContigs.fasta MyID

where MyID is used for labelling output. After inspection of the
corrected contigs aligned to the existing references, a second
command constructs a tailored reference for mapping, prepro-
cesses the reads, maps them and calls the consensus:

shiver_map_reads.sh MyInitDir config.sh \

MyContigs.fasta MyID MyID.blast \

MyAlignedContigs.fasta MyForwardReads.fastq \

MyReverseReads.fastq

This produces, for each sample,

• the mapped reads in BAM format;
• a plain text file with the counts of the different bases at each po-

sition, also including HXB2 coordinates (by default; not relevant

for non-HIV samples);
• the consensus;
• a coordinate-translated version of the consensus for a global

alignment; and
• the insert-size distribution.

The global alignment of consensuses produced from all sam-
ples is constructed simply by combining the coordinate-
translated consensus files from all samples into one file, e.g.
running from the command line

cat file1 file2 [. . .] > MyGlobalAlignment.fasta

For our data, shiver typically look less than an hour to process
each Miseq sample, and up to ten hours for each Hiseq sample (the
latter containing roughly ten times as many reads), on a single core
of the Imperial College London High-Performance Cluster (which is
a mixture of computational resources with different specifications).
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All bioinformatic parameters can be changed in the configu-
ration file (config.sh above), allowing customisation of how
reads are trimmed, how they are mapped, and how the consen-
sus is called as a function of coverage and diversity. shiver also
includes simple command-line tools for partial reprocessing
(modifying sample output without rerunning the whole pipe-
line), and for analysis—see Supplementary Section S3.

2.4 Example data and its processing by shiver

We used two datasets as examples for processing with shiver.
The first was sixty-eight publicly available Miseq samples: those
sequenced and released with the IVA publication (Hunt et al.
2015), namely accession numbers ERR732065–ERR732132 on the
European Nucleotide Archive. The samples have different ori-
gins; six are from a longitudinally sampled transmission pair
studied by Brener et al. 2015. ERR732065–ERR732072 were se-
quenced with 150 bp reads, ERR732073–ERR732132 with 250 bp
reads. Only forty-two of these sixty-eight samples were assem-
bled by Hunt et al. 2015: the rest failed quality control checks de-
signed to pre-select robust whole-genome samples. After
downloading the short reads from the European Nucleotide
Archive, we reassembled all sixty-eight samples with IVA for
processing with shiver, as by design our method can be run in
exactly the same way for those samples devoid of genuine se-
quence, those with partial genomes and those with whole
genomes.

The second dataset was fifty Hiseq samples newly generated
for the BEEHIVE project, from confirmed seroconverters from
Europe. RNA was extracted manually from blood samples fol-
lowing the procedure of Cornelissen et al. 2016. This was ampli-
fied using universal primers that define four overlapping
amplicons spanning the whole genome, following the proce-
dure of Gall et al. 2012. Specifically, 5 ll of Amplicon 1 (the
shortest and most successfully amplified amplicon) was pooled
with 10 ll each of Amplicons 2–4. Multiple samples were pooled
during library preparation, using one of 192 multiplex adaptors
for each sample. The library was sequenced in ‘rapid run mode’
on both lanes of a HiSeq2500 instrument with read lengths of
2 � 250 bp, resulting in two lanes of short reads per sample.
Automatic processing at the Wellcome Trust Sanger Institute
used IVA to generate contigs for each lane, i.e. two sets of con-
tigs per sample. We combined the two sets to allow comparison
of the assembly output resulting from two technical replicates
of short reads. For the large majority of cases the contigs were
nearly identical, but stochastic differences in the read popula-
tions between lanes mean the resulting contigs occasionally
differ.

The fifty Hiseq samples were chosen from a larger dataset
currently being collected and sequenced for the BEEHIVE proj-
ect’s primary aim of investigating the viral-molecular basis of
virulence. Selection criteria for inclusion in the project include a
known date of infection, either by negative and positive tests
separated by less than a year, or by clinical signs of acute infec-
tion at diagnosis; and a sample obtained for sequencing be-
tween 6 and 24 months after diagnosis, before beginning
antiretroviral treatment and before progression to AIDS. The
fifty samples processed here were chosen as follows. (1) One
sample chosen with a large difference in the fraction of the ge-
nome assembled between the two Hiseq lanes, as an example
of the variability of assembly output. (2) Nine samples chosen
with misassembled contigs for one or both Hiseq lanes, to illus-
trate the necessity of shiver’s contig correction. (3) From each
of the Dutch, French, German and Swiss cohorts, ten samples

with contigs spanning the whole genome: five subtype B and
five non-B samples (subtype was determined with the COMET
software (Struck et al. 2014)).

The existing reference set we used was the 2016 ‘compen-
dium’ group M genome alignment from the Los Alamos
National Laboratory, with a small amount of sequence trimmed
from both edges of the alignment to match the region of the ge-
nome amplified by the sequencing protocol used for all data
here (Gall et al. 2012), which partially excludes the flanking long
terminal repeat regions.

For comparison with shiver’s constructed mapping refer-
ence, for each sample we used kallisto (Bray et al. 2016) to
pseudo-align all the reads, using an index constructed from
3,249 whole genome references from the Los Alamos National
Laboratory HIV database (those in the 2016 ‘all genome’ align-
ment) together with the whole human genome (as an attractor
for human contaminant reads). We defined the closest existing/
real reference sequence for that sample as the one with the
highest transcript per million score.

For this analysis, we set the minimum coverage threshold
(the number of mapped reads required to call the base at each
position) to be 10 throughout, since the assembler we used—
IVA—requires at least ten reads to extend a contig, and we com-
pare the consensus to the contigs.

To illustrate application of shiver outside of HIV, we used it
to process Illumina paired reads from a whole-genome
Hepatitis C Virus (HCV) sample: accession number DRR000928
on the European Nucleotide Archive. We assembled the reads
into contigs using SPAdes (Bankevich et al. 2012), and for the ex-
isting reference set required as shiver input we used the 2008
‘all genome’ alignment of 471 references from the Los Alamos
National Laboratory HCV database (Kuiken et al. 2005). We also
ran shiver on Illumina paired reads from a whole-genome
Respiratory Syncytial Virus (RSV) sample: accession number
ERR438932 on the European Nucleotide Archive. We assembled
the reads into contigs using SPAdes, and for the existing refer-
ence set we used the sixty-three whole genomes sequenced by
Bose et al. 2015 from four continents to help capture global RSV
diversity. For both the RSV and HCV reads we used kallisto to
identify the closest sequence in the existing reference set, in
the same manner as described above for the HIV dataset.

3. Results

We ran shiver on the paired-end short read HIV data described
earlier—sixty-eight Illumina Miseq samples and fifty Illumina
Hiseq samples. Only sixty-five of the Miseq samples had at least
one contig that returned a BLASTN hit to a sequence in our cho-
sen set of existing references; these and all fifty Hiseq samples
were fully processed, giving whole or partial genomes. We
produced consensus sequences, together with summary
minority-variant information (base frequencies at each posi-
tion) and detailed minority-variant information (all reads
aligned to their correct position in the genome).

For comparison, for each sample we also mapped to the clos-
est existing reference sequence identified using kallisto, instead
of the shiver reference. We used the same mapping parame-
ters, mapped the same set of reads (following shiver’s removal
of adapters, primers, low-quality bases and contaminant read
pairs), and called the consensus of the mapped reads in the
same way (still using shiver), i.e. we changed only the refer-
ence sequence used for mapping.

Supplementary Sections S4 and S5 contain figures showing,
for each sample, the genes of HIV in their reading frames, a set

C. Wymant et al. | 7

D
ow

nloaded from
 https://academ

ic.oup.com
/ve/article-abstract/4/1/vey007/4999822 by The Librarian. user on 23 August 2019

Deleted Text:  &ndash; 
https://academic.oup.com/ve/article-lookup/doi/10.1093/ve/vey007#supplementary-data
Deleted Text: i
Deleted Text: s
Deleted Text: 68 
Deleted Text: -
Deleted Text: &thinsp;
Deleted Text: -
Deleted Text: &thinsp;
Deleted Text: 42 
Deleted Text: 68
Deleted Text: 68
Deleted Text: 50 
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: -
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: &thinsp;
Deleted Text: 50 
Deleted Text:  
Deleted Text: &thinsp;
Deleted Text: 50 
Deleted Text: i
Deleted Text: ii
Deleted Text: iii
Deleted Text: (TPM) 
Deleted Text:  &ndash; 
Deleted Text:  &ndash; 
Deleted Text: 10 
Deleted Text: 63 
Deleted Text: above
Deleted Text:  &ndash; 
Deleted Text: 68 
Deleted Text: 50
Deleted Text: 65 
Deleted Text: 50
https://academic.oup.com/ve/article-lookup/doi/10.1093/ve/vey007#supplementary-data


of sequences connected to this sample, and the coverage (num-
ber of reads mapped at each position) along the genome. We re-
produce the figure for the first Miseq sample here (Fig. 5)—as an
example for discussion. We see that there is no sequence data
in the region around the vif and vpr genes, which is the part of
Amplicon 3 in this sequencing protocol that is not overlapped
by neighbouring Amplicons 2 or 4. Evidently Amplicon 3 failed
to amplify for this sample. There is no contig sequence in this
region, a coverage less than the threshold of 10, and so consen-
sus sequence was not called. (The information contained in the
few reads that did map to this region is retained in the
minority-variant files produced by shiver; consensus sequence
could be called here, if one chose to lower the minimum cover-
age threshold parameter below 10.)

Comparisons of these sequences are quantified for each
sample in Supplementary Table S1, and in summary in Tables 1
and 2. For example Table 1 shows that mapping a sample’s
reads to the shiver reference instead of the real reference, the
median number of bases called differently and supported by
higher coverage is 13; the median number of bases called differ-
ently but with equal or lower coverage is 0. Interpreting higher
coverage as more accurate mapping, mapping to the shiver ref-
erence instead of the real reference typically corrects thirteen
false SNPs per sample. For this comparison we only considered
positions where a base was called in both consensuses, but the
base differed. As in the case of Fig. 2, inaccurate mapping may
also result in a stretch of sequence being missed from the con-
sensus. The median increase in the consensus sequence length
when mapping a sample’s reads to the shiver reference in-
stead of the real reference is 205 bp.

Table 2 shows that, for more than half of the samples, the
shiver consensus is no longer than the set of contigs (the me-
dian length increase is zero). However it is occasionally much
longer—see the relevant column of Supplementary Table S1—
due to assembly failure. The median number of bases in the
shiver consensus that differ from all contigs at that point is 7.
(Where the contigs disagree amongst themselves but one agrees
with the consensus, we count this as agreement.) As the con-
sensus is derived by mapping to the contig sequence at such

points and calling the most common base, such positions of dis-
agreement are probably improvements. Seven corrected SNPs is
a highly conservative estimate of the improvement over the
contigs, however, as the comparison was made after shiver

performed contig correction (including both structural correc-
tion and trimming of contig ends where they have no BLASTN
hit). This is because a base-by-base comparison of two se-
quences requires them to be aligned, and aligning the spliced or
partially reverse-complemented contigs that shiver corrects
(see Section 2.1) would give a nonsensical alignment. In addi-
tion, deriving the consensus from mapping instead of relying
solely on de novo assembly means that minority-variant infor-
mation is available.

As mentioned in Section 2, nine of the Hiseq samples were
chosen as illustrations of misassembled contigs, and twenty-
three of the Miseq samples with HIV contigs (twenty-six includ-
ing those without HIV contigs) were not considered in the IVA
publication due to failing sample quality control checks. These
samples are identified in Supplementary Table S1. The statistics
for shiver’s performance for these nine Hiseq samples are not
worse than those for the all the data, e.g. a median of thirty-one
bases called differently with higher coverage in the shiver con-
sensus, and 0 bases called differently with higher coverage
mapping to the real reference. This illustrates that problematic
contigs do not mean that mapping to an existing reference be-
comes preferable, thanks to shiver’s contig correction. The
IVA QC failures are mostly partial genomes; statistics for these
samples are scaled down from their values for the whole data
set due to these being shorter sequences. An exception is the in-
crease in the consensus sequence length over the length of the
contigs, whose median value is 0 for the whole dataset but thir-
ty-two for the QC failures. It is not surprising that contigs
should be shorter than mapping-derived consensuses for prob-
lematic samples previously excluded from consideration for
assembly.

These improvements from using shiver are small compared
with the length of the HIV genome—roughly 9,000 bases.
However the aim of sequencing a known pathogen is not to pro-
duce a roughly correct picture of the known genome, but to

Figure 5. Top panel: HIV genes in their reading frames. Middle panel: sequences for the Miseq sample ERR732065. From top to bottom these are the closest identified real

reference (see main text), the reference created and used for mapping by shiver, the consensus of reads mapped to shiver reference, the consensus of the same reads

mapped to the real reference, and the contigs generated by de novo assembly. Vertical black lines inside sequences in the alignment denote single nucleotide polymor-

phisms (SNPs), defined here relative to the most common base among these sequences. Horizontal black lines indicate a lack of bases, i.e. a deletion relative to another se-

quence in the alignment or, for the two consensuses, simply missing sequence due to insufficient coverage. Bottom panel: the coverage (number of mapped reads) for the

shiver reference in blue, and for the real reference in red. Mapping problems at Position 8450 are shown in detail in Fig. 2. Where the real reference and the sample differ

by many close SNPs or an indel, differences often arise between the shiver consensus and the consensuses mapping to the real reference. The coverage plot beneath the

sequences shows that at such points, the coverage mapping to the real reference almost always drops below the coverage mapping to the shiver reference; given that the

same reads are being mapped to the same part of the genome with the same mapping parameters, this strongly suggests that the shiver consensus is more accurate. This

is the case at Position 8450 in this figure, in the nef gene; the problem mapping to the real reference here was shown in detail in Fig. 2. Though the coverage here drops due

to the problem aligning the reads, it is still more than 4,000, showing that a large absolute number of reads is no guarantee of accuracy. Mapping to the shiver reference on

the other hand, coverage remains locally smooth. Similar errors mapping to the real reference in this figure can be seen in gag and in five different places in gp120.
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obtain each sample’s sequence as accurately as possible, so that
small numbers of differences between similar samples can be
meaningfully interpreted.

The problems arising from mapping to a reference that differs
from the sample in question do not arise simply from an inappro-
priate choice of mapper. To illustrate this, for the Miseq dataset
we also mapped the reads to their closest real reference sequence
using BWA and bowtie in both its ‘local’ and ‘end-to-end’ modes
(for both mappers we used their default settings except for spec-
ifying a maximum insert size of 2,000 for bowtie, retaining only
properly paired reads as we did with smalt). Figure 6A shows
the resulting coverage along the genome for the same sample
shown in Fig. 5. Localised drops in coverage indicate the same
problems described previously. This was common across all of
the samples; Fig. 6B shows a more extreme example, for which
mapping to the closest real reference using any of the mappers
performs very poorly.

Among the reads mapped by shiver, interesting within-
host diversity is maintained, capable of revealing structure in
the quasispecies. Figure 7 shows an example for our Hiseq sam-
ple 17796_3_29. The reads are from the boundary between p2
and p7 in the gag gene; roughly a third of them have a 21-bp in-
sertion relative to the others. This insertion is not seen in any
other sequence in the Los Alamos National Laboratory align-
ment ‘HIV1_ALL_2015_gag_DNA’ of 7,903 gag sequences (http://
www.hiv.lanl.gov/). Though not a duplication at the nucleotide
level, it duplicates the GATAMMQ amino acid motif. Mutations
at the p2/p7 boundary (Ho et al. 2008) and insertions at other

gag cleavage sites (Tamiya et al. 2004) have been implicated in
restoring replicative capacity in viruses treated with protease
inhibitors.

For the HCV sample, compared with mapping to the closest
existing reference identified from the reads, shiver called
nine bases differently, all supported by higher coverage.
shiver also recovered a 15-bp stretch of sequence that was
missing from the consensus after mapping to the closest exist-
ing reference. These nine different base calls and 15 bp of se-
quence were close together at the start of the E2 gene. There
were no indels between the sample and the closest existing
reference here, but a very high density of SNPs which pre-
vented accurate mapping of the sample’s reads to the closest
existing reference.

For the RSV sample, compared with mapping to the closest
existing reference identified from the reads, shiver called only
one base differently, supported by higher coverage. Clearly, ex-
amining only a single sample does not allow us to draw any
conclusions; however, this much more modest improvement in
using a constructed reference over an existing reference for RSV
is not surprising. The smaller amount of diversity in RSV (espe-
cially within each of its two distinct subgroups, A and B) com-
pared with HIV or HCV should make it easier to find an existing
reference with a very high degree of similarity to the sample in
consideration. On the other hand, for viruses exhibiting less di-
versity, each erroneous base call will have greater impact on
comparative analyses; shiver may therefore still be useful in
these cases.

Table 1. Comparing the consensus from mapping to the reference constructed by shiver with the consensus from mapping to the closest
identified real reference.

Number of bases called differently, with higher coverage when mapping to the shiver

reference than to the real reference
Min 0
Median 13
Mean 16.8
Max 57

Number of bases called differently, with higher (or equal) coverage mapping to the
real reference than to the shiver reference

Min 0
Median 0
Mean 1.2
Max 24

Extra length of the shiver consensuses compared with the real reference’s
consensus (in number of bases)

Min �54
Median 205
Mean 239.4
Max 1,262

Minima, medians, means, and maxima are over the combined set of sixty-five Miseq and fifty Hiseq samples processed. Means are rounded to one decimal place.

Table 2. Comparing the consensus from mapping to the reference constructed by shiver with the contigs (after correction of the contigs by
shiver).

Length of sequence present in the contigs but missing from the consensus Min 0
Median 0
Mean 0
Max 0

Length of sequence present in the consensus but missing from the contigs Min 0
Median 0
Mean 114.1
Max 2,443

Number of positions where all corrected contigs disagree with the consensus Min 0
Median 7
Mean 13.7
Max 106

Minima, medians, means, and maxima are over the combined set of sixty-five Miseq and fifty Hiseq samples processed. Means are rounded to one decimal place.
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In this methods article we do not present conclusions drawn
from analyses of sequences generated with shiver. Two such
analyses published so far are by Blanquart et al. 2017 and
Ratmann et al. 2017. Blanquart et al. 2017 determined that the
fraction of variability in HIV set-point viral load that is ex-
plained by viral genetic factors was around one third, using
1,373 European whole genomes. Ratmann et al. 2017 found pre-
dictors of HIV sequencing success or failure for 3,985 African
whole genomes, and studied the effect of the observed

amplification failure patterns on phylogenetic inference.
Analysis of both genomic datasets is ongoing.

4. Discussion

We developed the tool shiver to preprocess and map reads
from each sample to a custom reference, constructed using de
novo assembled contigs supplemented by existing reference ge-
nomes. Tailoring the reference to be as close as possible to the

A

B

Figure 6. Coverage over the genome following different mapping strategies. The line marked ‘shiver’ is for mapping to the reference constructed for the sample using

contigs, with smalt. The other lines are for mapping to the closest identified real reference using the indicated mapping algorithm. (A) is the same sample shown in

Fig. 5; (B) is Miseq sample ERR732071, a more extreme example of mapping failure using the closest real reference.

Figure 7. Within-host indel polymorphism in our Hiseq sample 17796_3_29: a 21 bp insertion in roughly a third of the reads duplicates the GATAMMQ amino acid motif

at the boundary between p2 and p7 in gag. The value following ‘_count ’ in the sequence name is the number of times that exact sequence was found in the reads here

following mapping with shiver; only sequences found at least fifty times are shown. HXB2 is included for comparison. Coloured squares highlight bases differing from

the consensus; bases without a coloured square agree with the consensus base at that position (ignoring gaps).
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expected consensus before mapping maximises the accuracy of
the mapping, and therefore of the resulting consensus.
shiver’s identification, ranking, and use of the closest existing
references to fill in gaps between contigs boosts data recovery
for samples with amplification failure or assembly failure. Such
partial-genome samples, which are inevitable in large diverse
data sets, are processed with exactly the same two commands;
this simplifies scripted application of shiver to all samples in a
data set. shiver also produces a global alignment containing all
of the consensuses separately generated for each sample, which
is usually required for comparative analysis of the sequences
such as for phylogenetics or GWASs.

Mapping to shiver’s constructed reference instead of map-
ping the same reads to the closest identified real reference gives
a median increase in consensus sequence length of 205 bp, with
thirteen of the original bases called differently and more accu-
rately. This shows the importance of tailoring the reference to
the sample before mapping. shiver’s consensus, obtained by
mapping reads to a reference constructed from the contigs, has
a median of 7 bases called differently from the contigs even af-
ter correcting structural problems in the contigs and trimming
suspicious sequence from their ends. This illustrates the need
for mapping in addition to assembly.

A limitation of the method is that after reads have been suc-
cessfully mapped (which imposes requirements on base quality
and good alignment to the reference), we consider each read to
carry equal weight in determining the consensus and the fre-
quency of variant bases. The frequency of a variant in the reads
and its frequency in the sampled virions may differ due to PCR
bias—amplification of some virions more than others. A proper
reconciliation of these frequencies would require modelling the
number of virions in the sample, their diversity, the process
generating PCR bias, and sequencing error, which is beyond the
scope of this work. Included in shiver is the option to dedupli-
cate mapped reads based on their position: from each set of
paired reads with identical mapped coordinates, retaining only
one pair and discarding the rest as suspected PCR duplicates
(using Picard). This is turned off by default, as decreasing the
coverage and discarding some diversity in the reads may not be
appropriate for every sequencing protocol. We do not include
an option for removal of duplicate reads before mapping based
on exact sequence matches, as this preferentially retains reads
with sequencing error. Instead of addressing the problem of
PCR bias at the analysis stage, it can be addressed with the se-
quencing protocol: primer IDs (Jabara et al. 2011) can associate
every read to its template, allowing identification of all PCR du-
plicates (as well as permitting separate reconstruction of all
haplotypes). As with SGA however, higher costs for each sample
currently limit applicability to large population studies.

Another limitation is that no mapping of diverse reads can
guarantee perfect accuracy at every position in every sample, as
perfect sequence alignment is an unsolved problem. In particu-
lar where samples contain indel polymorphisms, or where
localised misassembly results in an indel not present in the
reads, mapping may misalign reads in a way that is not cured
by remapping to their own consensus, since the misalignment
gives an error in the consensus. As with all automatic sequence
alignment, there is scope for improvement by manual inspec-
tion. shiver’s performance is also linked to that of the assem-
bler used to produce the input contigs. For a sample with parts
of the genome where assembly failed to produce contigs,
shiver’s reference is constructed using the closest identified
reference in lieu of the missing contigs. For such samples the
bias of mapping to an existing reference is still present to some

degree, though mitigated by shiver’s option to map a second
time to its initial consensus.

For sequences that are recombinants of a type not seen in
existing reference sets, shiver will nevertheless construct an
appropriate reference for mapping provided contigs were fully
assembled from the available reads, i.e. either the contigs span
the whole genome, or they are missing only where reads are
missing. As shiver fills in gaps between contigs using the sin-
gle closest existing reference (supplemented by further existing
references only at the ends, i.e. if the closest reference is shorter
than some others), in the event of partial assembly failure for a
novel recombinant this might not produce a mapping reference
as well tailored to the sample as some process of mixing differ-
ent existing references at different parts of the genome to lo-
cally match the available contigs. However shiver’s second
round of mapping to the first round’s consensus will partially
mitigate this, and as novel recombinant samples with partial
assembly failure are expected to be rare (noting that the success
of de novo assembly is independent of subtype or recombina-
tion), we prefer not to mix existing references throughout the
genome, for simplicity and robustness to reference
misalignment.

A design choice is that shiver does not take into account
translation to amino acids, and in particular does not bias to-
wards maintaining reading frames. Deliberately including this
bias would be clearly justified for many organisms, but the case
is arguable for HIV due to overlapping reading frames, frame-
shifting polymorphisms, and possibly antisense expression
(Miller 1988; Cassan et al. 2016). Other tools exist to extract in-
frame gene sequences from shiver consensuses, such as Gene
Cutter (https://www.hiv.lanl.gov/content/sequence/GENE_
CUTTER/cutter.html).

Individuals who are dually infected—hosting two distinct
quasispecies, whether by two distinct founder viruses establish-
ing productive infections, or by superinfection—are known to
be special cases clinically, and perhaps for evolution, because of
the opportunity for recombination. It is important to note that
they are also special cases for bioinformatic processing
(Giallonardo et al. 2014). If one of the two quasispecies is more
highly represented in the reads at every position in the genome,
the consensus sequence for the infected individual will be sim-
ply the consensus of the more abundant quasispecies. However
if one quasispecies has more reads at part of the genome and
the other has more reads elsewhere in the genome, the consen-
sus will be a recombinant of both quasispecies; a recombinant
which may never have existed in vivo, and which may invalidate
phylogenies in which it is included. Clearly, care must be taken
in identifying such individuals as their dually infected status
may not be known.

Our focus here has been reconstruction of the consensus se-
quence that summarises a quasispecies. The process of doing
this from diverse reads—from different virions in the
quasispecies—retains rich information on within-host diversity.
Our separate tool phyloscanner (Wymant et al. 2017) allows
easy extraction, processing, alignment and parallel phyloge-
netic analysis of the short reads from many genomic windows
of many mapped read files, for example those produced by
shiver. Examination of within-host and between-host diversity
together, at every position along the genome, allows identifica-
tion of dual infections, transmission, recombination and con-
tamination. These more detailed pictures of quasispecies and
the relationships between them, in addition to their summaries
as consensus sequences, further motivate the valuable role NGS
has to play in our understanding of HIV.
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Data availability

The Miseq short reads processed here are publicly available on
the European Nucleotide Archive: accession numbers
ERR732065–ERR732132. The newly generated Hiseq short reads
processed here will be made available subject to a data access
request, to ensure patient confidentiality is protected.

Supplementary data

Supplementary data are available at Virus Evolution online.
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Sample
Miseq (M) or 
Hiseq (H) data Closest identified real reference

shiver 
consensus 
length

Extra length in 
shiver consensuses 
(c.f. real reference 
consensus)

Extra length in shiver 
consensuses (c.f. real 
reference consensus) 
at the ends

Extra length in shiver 
consensus (c.f. real 
reference consensus) 
internally

ERR732065 M B.AU.87.MBC925.AF042101 8198 174 0 174
ERR732066 M B.DK.01.CTL_035.EF514710 7354 306 193 113
ERR732067 M 02_AG.GH.97.97GH_AG1.AB049811 5767 -54 0 -54
ERR732068 M B.US.86.5096_86.AY835749 4561 2 0 2
ERR732069 M B.US.00.THRO_TF1.JN944930 5695 54 0 54
ERR732070 M A1.KE.04.04KE354207V3.KT022363 8077 410 289 121
ERR732071 M 11_cpx.CM.04.1230_24.KP718938 8230 471 12 459
ERR732072 M B.KR.92.HP_10_02SHJ8_6986.KJ140255 8072 220 79 141
ERR732073 M C.ZA.03.03ZASK107B1.DQ056410 9018 84 70 14
ERR732074 M C.TZ.08.707010457_CH457.w8.KC156220 9048 86 0 86
ERR732076 M C.ZA.99.99ZALT21.EU293446 9053 81 1 80
ERR732077 M C.ZA.03.03ZASK107B1.DQ056410 9053 243 70 173
ERR732078 M C.ZA.99.99ZALT21.EU293446 9053 78 0 78
ERR732079 M C.ZA.03.03ZASK107B1.DQ056410 9053 283 70 213
ERR732080 M C.ZA.03.03ZASK107B1.DQ056410 9029 189 70 119
ERR732081 M C.ZA.03.03ZASK107B1.DQ056410 9023 185 70 115
ERR732082 M C.IN.00.DEMC00IN008.KP109483 9038 258 185 73
ERR732083 M B.TW.94.TWCYS_LM49.AF086817 9002 74 0 74
ERR732085 M B.KR.93.HP_17_02LSP11_2268.KJ140262 9000 230 120 110
ERR732086 M BF1.BR.10.10BR_RJ075.KT427651 9002 140 59 81
ERR732087 M BF1.BR.10.10BR_RJ075.KT427651 9002 149 59 90
ERR732088 M C.ZM.02.02ZMBC.AB254149 9027 1 0 1
ERR732089 M B.KR.93.HP_17_02LSP11_2268.KJ140262 9005 173 121 52
ERR732090 M B.KR.93.HP_17_02LSP11_2268.KJ140262 9002 132 0 132
ERR732091 M 01_AE.GB.10.Donor_N094_20_Month.KP873161 9048 18 3 15
ERR732092 M 01_AE.GB.10.Donor_N094_20_Month.KP873161 9030 4 3 1
ERR732093 M B.KR.04.04WK7_HIV_1_wk.DQ295194 7312 86 -1 87
ERR732094 M C.ZA.03.03ZASK107B1.DQ056410 9017 88 70 18
ERR732095 M C.ZA.03.03ZASK107B1.DQ056410 9019 92 73 19
ERR732096 M C.ZA.03.03ZASK107B1.DQ056410 9017 80 70 10
ERR732097 M C.ZA.03.03ZASK107B1.DQ056410 9045 108 70 38
ERR732098 M B.KR.93.HP_17_02LSP11_2268.KJ140262 9020 311 0 311
ERR732099 M B.KR.93.HP_17_02LSP11_2268.KJ140262 9020 303 80 223
ERR732100 M 01_AE.GB.10.Donor_N094_20_Month.KP873161 9030 6 3 3
ERR732101 M 01_AE.GB.10.Donor_N094_20_Month.KP873161 9036 0 3 -3
ERR732102 M C.TZ.08.707010457_CH457.w8.KC156220 9014 34 0 34
ERR732103 M B.KR.93.HP_17_02LSP11_2268.KJ140262 9000 223 0 223
ERR732104 M C.ZA.99.99ZALT21.EU293446 9029 56 0 56
ERR732105 M C.ZA.99.99ZALT21.EU293446 9045 74 0 74
ERR732106 M B.US.03.933384.KT124807 8961 447 374 73
ERR732107 M B.US.06.06US_SAJ_C166_SG.JF689864 8967 608 380 228
ERR732108 M B.US.13.862898.KT124796 9010 385 372 13
ERR732109 M B.US.07.HIV_US_BID_V4516_2007.JQ403096 4559 293 293 0
ERR732110 M B.AU.95.C24.AF538304 9037 334 115 219
ERR732111 M B.CY.05.CY124.FJ388933 9064 1262 1077 185
ERR732112 M B.JP.x.DR1712.AB604946 8127 80 0 80
ERR732113 M B.KR.93.HP_17_02LSP11_2268.KJ140262 7353 207 0 207
ERR732114 M B.KR.93.HP_17_02LSP11_2268.KJ140262 9008 299 0 299
ERR732115 M B.KR.93.HP_17_02LSP11_2268.KJ140262 7957 501 232 269
ERR732116 M B.KR.93.HP_17_02LSP11_2268.KJ140262 8999 270 80 190
ERR732117 M 01_AE.GB.10.Donor_N094_20_Month.KP873161 5004 53 3 50
ERR732118 M 01_AE.GB.10.Donor_N094_20_Month.KP873161 9070 65 22 43
ERR732119 M C.ZA.05.05ZASK245B1.DQ369982 7355 145 70 75
ERR732120 M B.US.87.5113_87.AY835758 7351 131 0 131
ERR732121 M B.US.87.5113_87.AY835758 7351 131 0 131
ERR732122 M B.US.04.ES8_43.EF363126 7328 216 -1 217
ERR732123 M B.UY.99.99UY_TRA0177.JN235965 7763 596 299 297

Supplementary Table S1: statistics for the processed samples. In the 'Notes' column: 'QC failure' 
indicates those samples that failed QC checks for assembly in the IVA publication; 'Contig correction' 
indicates those samples specifically chosen as examples of the need for shiver's correction of structural 
problems in contigs; 'Lane differences' indicates the sample chosen to illustrate differences in assembly 
output for technical replicate samples (i.e. the contigs for the two Hiseq lanes for this sample).



Sample
Miseq (M) or 
Hiseq (H) data Closest identified real reference

shiver 
consensus 
length

Extra length in 
shiver consensuses 
(c.f. real reference 
consensus)

Extra length in shiver 
consensuses (c.f. real 
reference consensus) 
at the ends

Extra length in shiver 
consensus (c.f. real 
reference consensus) 
internally

ERR732124 M B.KR.05.05YJN2.JQ316134 1911 0 0 0
ERR732126 M B.US.07.07US_SAJ_C161_H1.JF689883 7346 379 298 81
ERR732127 M B.US.11.ES22_27.KF384808 1910 0 0 0
ERR732128 M B.US.08.HIV_US_BID_V4489_2008.JQ403094 7345 492 293 199
ERR732129 M B.GB.05.MM43d368_GN1.HM586209 9023 364 381 -17
ERR732130 M B.GB.05.MM43d368_GN1.HM586209 9042 382 382 0
ERR732131 M B.GB.05.MM43d368_GN1.HM586209 9022 377 381 -4
ERR732132 M B.GB.05.MM43d368_GN1.HM586209 9020 365 381 -16
17621_3_80 H 0107.CN.07.JL070032.KC990127 8993 168 78 90
17653_3_25 H B.JP.x.JRC65B.AB565502 9007 73 0 73
17653_3_36 H B.FR.11.DEMB11FR001.KF716496 8932 253 257 -4
17653_3_56 H 02_AG.CM.01.01CM_0002BBY.AY371122 8994 643 638 5
17653_3_62 H 09_cpx.SN.95.95SN7808.AY093604 9080 454 336 118
17653_3_64 H 22_01A1.CM.01.01CM_0001BBY.AY371159 9057 712 647 65
17653_3_72 H B.US.11.CP7_2B.KF384805 8999 158 89 69
17653_3_74 H B.AU.86.MBC200.AF042100 9031 19 0 19
17654_3_46 H B.YE.02.02YE508.AY795905 9026 327 299 28
17654_3_71 H 02_AG.CM.02.02CM_4082STN.AY371141 9042 640 638 2
17654_3_72 H B.JP.98.DR1120.AB480698 9071 140 3 137
17654_3_78 H B.KR.04.04KMK5.JQ316126 9046 205 92 113
17795_3_40 H B.AU.86.MBC200.AF042100 9026 1 0 1
17796_3_1 H 14_BG.ES.05.X1870.FJ670522 9076 104 48 56
17796_3_29 H B.DE.04.963987.KT124812 8971 361 293 68
17796_3_30 H B.DE.86.D31.U43096 8966 61 0 61
17796_3_35 H B.US.07.07US_SAJ_C166_MS.JF689886 9009 351 304 47
18209_3_31 H C.ZA.03.03ZASK107B1.DQ056410 9039 110 70 40
18209_3_36 H C.ZA.04.SK133B1.AY772698 8984 496 73 423
18209_3_38 H B.ES.09.DEMB09ES007.KC473841 9003 145 137 8
19561_3_127 H C.ZA.03.SK041B1.AY772693 9044 218 122 96
19562_3_109 H 01_AE.VN.97.97VNAG218.FJ185255 9041 299 257 42
19562_3_2 H B.US.07.HIV_US_BID_V3120_2007.JQ403078 9014 369 293 76
19562_3_30 H C.ZA.07.705010162_CH162.mo6.KC156115 8971 8 0 8
19562_3_31 H B.JP.08.NMC104_clone_01.AB731663 9018 140 3 137
19562_3_46 H B.US.x.AC_16_0_Days_Consen_fa.DQ127537 8904 370 300 70
19562_3_50 H B.US.85.5077_85.AY835769 9057 70 0 70
19562_3_51 H B.US.x.CR0192W.FJ469704 9040 315 275 40
19562_3_6 H D.KE.11.DEMD11KE003.KF716476 9046 400 150 250
19893_3_71 H 01_AE.TH.05.05TH342968.JN248342 9018 340 310 30
19960_3_11 H B.KR.92.HP_10_02SHJ8_6986.KJ140255 9032 221 104 117
19960_3_116 H B.GB.x.MANC.U23487 9003 30 0 30
19960_3_119 H B.FR.83.HXB2_LAI_IIIB_BRU.K03455 9051 87 0 87
19960_3_12 H B.US.03.CR0154X.FJ469701 8980 309 281 28
19960_3_146 H B.US.06.502_0346_wg02.JF320097 9026 378 293 85
19960_3_15 H 12_BF.UY.99.URTR23.AF385934 8978 9 0 9
19960_3_16 H B.US.05.05US_SAJ_NVS12.JF689852 9046 411 309 102
19960_3_17 H B.BR.04.BREPM1066.FJ195090 9028 64 49 15
19960_3_18 H B.CY.08.CY226.JF683775 9002 962 298 664
19960_3_22 H 02_AG.DE.09.701114.KT124792 9120 429 309 120
19960_3_28 H 17_BF.BO.02.BO02_BOL119.EU581827 8948 293 296 -3
19960_3_40 H A1.KE.99.KSM4021.AF457075 8986 690 298 392
19960_3_44 H B.DE.86.HAN.U43141 9002 96 46 50
19960_3_49 H B.TH.04.04TH803686.JN248333 9005 327 288 39
19960_3_6 H BC.CN.07.jx070017.KF250384 8962 374 293 81
19960_3_70 H BC.BR.92.92BR023.HM100716 9001 13 0 13
19960_3_9 H B.KR.05.05CSR3.DQ837381 9038 155 38 117
20004_3_146 H B.US.06.502_0346_wg02.JF320097 8951 339 294 45
20004_3_155 H A1D.KE.06.06KE894822V7.KT022417 9020 517 285 232
20004_3_56 H B.US.00.ES1_20.EF363123 8994 41 0 41

minimum N/A N/A 1910 -54 -1 -54
median N/A N/A 9009 205 70 73
mean N/A N/A 8535.7 239.4 143.2 96.2
maximum N/A N/A 9120 1262 1077 664



Sample

Number of bases called 
differently with higher coverage 
mapping to the shiver reference 
than to the real reference

Number of bases called differently 
with higher (or equal) coverage 
mapping to the real reference than 
to the shiver reference

Number of positions where 
at least one of the 
corrected contigs agrees 
with the shiver consensus

Number of positions 
where all corrected 
contigs disagree with the 
consensus

ERR732065 2 0 8142 7
ERR732066 1 0 7332 0
ERR732067 5 2 4911 5
ERR732068 1 0 4536 3
ERR732069 4 0 5632 20
ERR732070 16 0 8016 28
ERR732071 26 0 8178 13
ERR732072 42 4 7992 40
ERR732073 51 1 8962 56
ERR732074 53 3 9019 41
ERR732076 9 0 9049 4
ERR732077 19 0 9053 0
ERR732078 10 0 9053 0
ERR732079 20 1 9046 7
ERR732080 19 0 9020 9
ERR732081 32 0 8958 7
ERR732082 14 0 9025 13
ERR732083 27 9 8987 15
ERR732085 40 2 7029 44
ERR732086 16 0 8989 13
ERR732087 7 0 8998 4
ERR732088 52 0 9003 24
ERR732089 43 1 8992 13
ERR732090 57 6 8981 21
ERR732091 23 2 9019 29
ERR732092 42 4 8996 28
ERR732093 5 0 4867 2
ERR732094 30 2 8964 55
ERR732095 38 0 8914 106
ERR732096 31 1 8974 43
ERR732097 38 1 8994 59
ERR732098 2 0 9018 2
ERR732099 13 0 9019 1
ERR732100 23 2 9016 14
ERR732101 15 18 9004 32
ERR732102 55 1 8980 34
ERR732103 37 0 8827 14
ERR732104 25 0 9019 10
ERR732105 15 0 9040 13
ERR732106 19 0 8922 54
ERR732107 4 0 8960 7
ERR732108 2 0 9004 6
ERR732109 0 1 4535 2
ERR732110 16 0 9019 18
ERR732111 8 0 9027 37
ERR732112 5 0 8093 2
ERR732113 2 0 7327 6
ERR732114 5 0 8971 37
ERR732115 3 0 7315 9
ERR732116 22 0 8974 25
ERR732117 12 2 4944 9
ERR732118 8 1 9057 13
ERR732119 11 0 7325 10
ERR732120 6 0 7335 6
ERR732121 8 0 7333 0
ERR732122 3 0 7169 5
ERR732123 6 0 7738 8



Sample

Number of bases called 
differently with higher coverage 
mapping to the shiver reference 
than to the real reference

Number of bases called differently 
with higher (or equal) coverage 
mapping to the real reference than 
to the shiver reference

Number of positions where 
at least one of the 
corrected contigs agrees 
with the shiver consensus

Number of positions 
where all corrected 
contigs disagree with the 
consensus

ERR732124 0 0 1888 0
ERR732126 6 0 7324 3
ERR732127 0 0 1857 30
ERR732128 6 0 6090 7
ERR732129 0 0 9022 1
ERR732130 0 0 9042 0
ERR732131 1 0 9005 21
ERR732132 2 4 8997 23
17621_3_80 41 0 8911 46
17653_3_25 18 0 9001 6
17653_3_36 6 0 8794 3
17653_3_56 6 0 8989 5
17653_3_62 19 0 9062 33
17653_3_64 12 0 9048 9
17653_3_72 7 0 8957 3
17653_3_74 23 0 9029 2
17654_3_46 18 0 9013 11
17654_3_71 28 1 9036 5
17654_3_72 28 0 9069 2
17654_3_78 5 0 9038 8
17795_3_40 31 24 9019 7
17796_3_1 6 0 9026 2
17796_3_29 50 3 6740 3
17796_3_30 23 23 7319 2
17796_3_35 34 1 8035 13
18209_3_31 50 11 9017 19
18209_3_36 21 0 8980 4
18209_3_38 12 0 8999 4
19561_3_127 10 0 9039 5
19562_3_109 9 0 9038 3
19562_3_2 17 0 9005 10
19562_3_30 8 0 8960 11
19562_3_31 13 0 9012 3
19562_3_46 18 1 8894 3
19562_3_50 14 0 9052 5
19562_3_51 13 0 9033 7
19562_3_6 18 0 9043 3
19893_3_71 10 0 9014 3
19960_3_11 14 0 9023 9
19960_3_116 8 0 8997 6
19960_3_119 13 0 9039 12
19960_3_12 8 1 8980 0
19960_3_146 19 0 8965 64
19960_3_15 5 0 8973 2
19960_3_16 20 0 9042 4
19960_3_17 11 0 9024 4
19960_3_18 32 0 8998 4
19960_3_22 0 1 9116 4
19960_3_28 5 0 8942 6
19960_3_40 10 0 8983 3
19960_3_44 21 0 8999 3
19960_3_49 15 0 8992 13
19960_3_6 18 0 8959 3
19960_3_70 20 0 8993 8
19960_3_9 11 0 9029 6
20004_3_146 12 0 8941 10
20004_3_155 4 0 9018 2
20004_3_56 4 0 8987 5

minimum 0 0 1857 0
median 13 0 8992 7
mean 16.8 1.2 8408.7 13.7
maximum 57 24 9116 106



Sample

Number of positions where at 
least one contig has a base 
and the shiver mapping failed 
to call a base

Number of positions 
where there is no contig 
coverage but the shiver 
consensus has a base Notes

ERR732065 0 49 QC failure
ERR732066 0 22 QC failure
ERR732067 0 852 QC failure
ERR732068 0 22 QC failure
ERR732069 0 43 QC failure
ERR732070 0 33 QC failure
ERR732071 0 39 QC failure
ERR732072 0 41 QC failure
ERR732073 0 0
ERR732074 0 0
ERR732076 0 0
ERR732077 0 0
ERR732078 0 0
ERR732079 0 0
ERR732080 0 0
ERR732081 0 58
ERR732082 0 0
ERR732083 0 0
ERR732085 0 1927
ERR732086 0 0
ERR732087 0 0
ERR732088 0 0
ERR732089 0 0
ERR732090 0 0
ERR732091 0 0
ERR732092 0 6
ERR732093 0 2443 QC failure
ERR732094 0 4
ERR732095 0 0
ERR732096 0 0
ERR732097 0 3
ERR732098 0 0
ERR732099 0 0
ERR732100 0 0
ERR732101 0 0
ERR732102 0 0
ERR732103 0 159
ERR732104 0 0
ERR732105 0 0
ERR732106 0 0
ERR732107 0 0
ERR732108 0 0
ERR732109 0 22 QC failure
ERR732110 0 0
ERR732111 0 0
ERR732112 0 32 QC failure
ERR732113 0 20 QC failure
ERR732114 0 0
ERR732115 0 633 QC failure
ERR732116 0 0
ERR732117 0 51 QC failure
ERR732118 0 0
ERR732119 0 20 QC failure
ERR732120 0 10 QC failure
ERR732121 0 18 QC failure
ERR732122 0 154 QC failure
ERR732123 0 17 QC failure



Sample

Number of positions where at 
least one contig has a base 
and the shiver mapping failed 
to call a base

Number of positions 
where there is no contig 
coverage but the shiver 
consensus has a base Notes

ERR732124 0 23 QC failure
ERR732126 0 19 QC failure
ERR732127 0 23 QC failure
ERR732128 0 1248 QC failure
ERR732129 0 0
ERR732130 0 0
ERR732131 0 0
ERR732132 0 0
17621_3_80 0 36 Contig correction
17653_3_25 0 0
17653_3_36 0 135
17653_3_56 0 0
17653_3_62 0 0 Contig correction
17653_3_64 0 0
17653_3_72 0 39
17653_3_74 0 0
17654_3_46 0 5
17654_3_71 0 1
17654_3_72 0 0
17654_3_78 0 0
17795_3_40 0 0 Contig correction
17796_3_1 0 48 Contig correction
17796_3_29 0 2228 Contig correction
17796_3_30 0 1645 Lane differences
17796_3_35 0 967 Contig correction
18209_3_31 0 6 Contig correction
18209_3_36 0 0 Contig correction
18209_3_38 0 0 Contig correction
19561_3_127 0 0
19562_3_109 0 0
19562_3_2 0 0
19562_3_30 0 0
19562_3_31 0 3
19562_3_46 0 7
19562_3_50 0 0
19562_3_51 0 0
19562_3_6 0 0
19893_3_71 0 1
19960_3_11 0 0
19960_3_116 0 0
19960_3_119 0 0
19960_3_12 0 0
19960_3_146 0 0
19960_3_15 0 3
19960_3_16 0 0
19960_3_17 0 0
19960_3_18 0 0
19960_3_22 0 0
19960_3_28 0 0
19960_3_40 0 0
19960_3_44 0 0
19960_3_49 0 0
19960_3_6 0 0
19960_3_70 0 0
19960_3_9 0 3
20004_3_146 0 0
20004_3_155 0 0
20004_3_56 0 2

minimum 0 0
median 0 0
mean 0.0 114.1
maximum 0 2443
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Figure S1: the number of HIV sequences available from the Los Alamos National Laboratory database
on 11th Oct 2017 with sampling year and sequencing platform information available, as a function of
minimum sampling year for inclusion (i.e. restricting the included sequences to increasingly recent ones).
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Figure S2: As Fig. S1 but showing the fraction for each platform.
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Figure S3: the number of HIV sequences available from the Los Alamos National Laboratory database
on 11th Oct 2017 with sequencing platform information available, as a function of minimum sequence
length for inclusion (i.e. restricting the included sequences to increasingly long ones).
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Figure S4: As Fig. S3 but showing the fraction for each platform.
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SI 2 Our Method in More Detail

shiver is under continuing development; if at a later date description here contradicts descriptions at
github.com/ChrisHIV/shiver, the latter has precedence.

2.1 Existing References

An alignment of existing reference sequences is required as input for shiver. Construction of a custom
reference for mapping involves identifying the existing references that are closest to the sample under
consideration. The greater the number and diversity of existing references given as input, the denser
and broader the coverage of sequence space is, and the closer the closest reference is expected to be,
with corresponding benefits for the accuracy of the results. However these existing references should be
aligned to each other accurately, in order for the addition of each sample’s contigs to the alignment to be
meaningful; this means that producing such an input by automatically aligning a large number of diverse
sequences without checking the results would be a bad idea. You will use this alignment as input for
every sample in a dataset processed by shiver, and so we advise putting a little thought into sequence
selection and manually curating the alignment if needed.

2.2 Constructing a Tailored Reference Using the Contigs

Custom reference construction begins with contig preprocessing as follows. Matches between the contigs
and any existing reference from the alignment are searched for using BLASTN with default settings, except
for the -max target seqs 1 option (specifying that all reported hits are to a single reference only), and
with -word size set to 17 (this can be changed in shiver’s configuration file). Contaminant sequence
is inevitable in high-throughput NGS; any contig that has no BLASTN hit to any of the HIV references is
taken to be contamination, and is put aside for later use, leaving contigs that are putatively HIV. The
BLASTN results are used to correct the contigs in three ways.

1. Where a single contig has multiple BLASTN hits (discarding any hit wholly contained inside another
hit), we consider this evidence that the contig is spliced – concatenating two separated regions of
the genome – due to errors in silico or during sequencing, as mentioned in the introduction. We
correct this by cutting the contig into separate contigs at the midpoint between the hits.

2. We trim off any part of the contig that was not spanned by a BLASTN hit. The ends of contigs are by
definition points at which the assembler has been unable to continue extending the sequence, either
because of lack of reads, or because the within-sample diversity has become too great for a single,
meaningful, representative sequence to be chosen. The latter possibility also means erroneous bases
are more common in short stretches of sequence at the end of a contig. Trimming such sequence
from the ends of contigs means the corresponding sequence from the closest existing reference will be
used instead, giving a better reference for mapping. (Some assembly algorithms trim a fixed length
from the ends of contigs for precisely this reason; however trimming a variable length dependent on
its match to known sequence is clearly preferable.)

3. Any contig whose BLASTN hit is in the opposite orientation is reverse-complemented. If the assembler
does not orientate the contigs, on average half of them will be in the reverse orientation. IVA

orientates contigs such that the longest open reading frame is on the forward strand, however for
very short contigs this may fail. In the process of assembling a spliced contig, an assembler may
concatenate different regions in different orientations; shiver considers whether each separate part
of a split contig requires reverse-complementation.

Contigs are then aligned to the existing reference alignment using MAFFT, trying both --add and
--addfragments modes and using the one with the smallest maximum gap fraction (the maximum
calculated over all contigs in each alignment). After alignment, a contig found to have an overly large
internal deletion (by default 160bp) is split into two separate contigs at that point. This has the same
role as BLASTN-based correction step 1 above, serving as a backup.

The alignment of contigs to the set of existing references should be visually inspected at this point.
For HIV sequences, reference [1] states that “Algorithmic alignment does not necessarily retrieve the best
alignment. It is important to always verify whether the sequence data are aligned unambiguously and,
if necessary, manually correct the alignment.” Reference [2] echoes this for any evolving pathogen: “the
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‘best’ alignment chosen by an alignment program is not necessarily the ‘true’ alignment. . . Alignment
quality should also be inspected manually in a visualisation program”. The commonness of indels in HIV
makes alignment more difficult, as does the fact that the contigs may be an imperfect representation of
the true sample even after correction. We used Geneious [3] for sequence visualisation and editing where
needed.

As well as revealing alignment error, inspection of the aligned contigs allows the user to check for any
remaining problems with the contigs. We suggest that in general the user inspects both the alignment
of the existing references with the raw HIV contigs (before any correction by shiver), and the alignment
of the existing references with the corrected HIV contigs, as a check that all shiver’s modifications of
the contigs are desired. An example of when this might not be the case is when the sample contains an
indel not observed in the existing reference set, that is large enough to cause the contig to be split in
two at that point, but which the user thinks might be genuine rather than an a misassembly (through
previous/expert knowledge, or perhaps simply observing the same indel in multiple samples in a dataset).
With sufficiently accurate mapping, reads will map here correctly whether or not the reference constructed
from the contigs contains the indel, making the question moot; however with mapping inaccuracies of
the kind shown in Figure 2 possible, it’s best to get the reference’s structure as correct as possible before
mapping.

Using the alignment of contigs to existing references, the set of contigs is flattened into a single
sequence as follows. At positions covered by one contig, its base (or gap character, for a deletion) is
used. At positions covered by multiple contigs, we use whatever the longest contig has (be it base or
gap). We used this heuristic expecting that, where sufficiently distinct haplotypes exist to result in
multiple contigs covering the same place, haplotypes supported by a higher depth of reads would tend to
be assembled into longer contigs. The sequence resulting from this flattening of the contigs is compared
to each existing reference in the alignment in turn: we count towards similarity shared bases and gaps
within contigs (known deletions), but not gaps between contigs (missing information). The existing
references are ranked by their similarity to the contigs. As existing references have variable lengths (the
long terminal repeat regions that flank the clinical genome are sometimes sequenced only partially or
not at all), the closest reference is extended outwards using any overhanging sequence from the second
closest reference, then the third longest sequence etc. terminating when both edges of the alignment are
reached. This sequence – the elongated closest reference – is used to fill in any gaps between (but not
inside of) the flattened contigs. This completes production of the reference tailored for this sample.

2.3 Preparing and Mapping the Reads

Before mapping to this reference, the reads are trimmed and cleaned as follows. Adapters, primers and
low quality bases are trimmed using Trimmomatic and Fastaq. We then consider contaminant reads from
non-HIV sources. Most of these would presumably be discarded by mapping to an HIV reference, due to
lack of similarity. However there is ample opportunity for traces of human DNA to end up in a sample,
and sequence of endogenous retroviruses in human DNA may resemble HIV. As a guard against this, and
against any other contamination resembling HIV, we use BLASTN to find all read pairs that are a better
match to one of the contigs previously found to be contamination, than to the tailored reference. These
pairs are discarded.

The cleaned reads are mapped to the tailored reference, using SMALT by default (with BWA and bowtie

as optional alternatives), giving a file in BAM format. Using SAMtools the BAM file is read into pileup
format, which is parsed to give base frequencies at each position in the genome. Note that within-host
diversity does not consist exclusively of point mutations: indels can be present in some reads and not
others (Fig. 7 is an example), which must be dealt with in the pileup. Where some reads have a deletion
relative to the reference and others do not, the deletion/gap character can simply be considered as a fifth
base whose frequency can be counted like the others. Where some reads have an insertion relative to the
reference and others do not, or more generally where insertions of two or more sizes are present, we find
the most common insertion size and, inside that insertion, consider only those reads with an insertion of
that size (thus avoiding any ambiguity in the alignment of the inserted sequences to each other). Finally,
the base frequency file is parsed to call the consensus base at each position. By default the most common
base is called to give the consensus, using an ambiguity code only for an exact tie in the frequency of
two or more bases; optionally ambiguity codes can be used more readily, when the frequency of the most
common base or bases is below a specified threshold. A consensus base is only called if the coverage
equals or exceeds a minimum threshold specified by the user, to protect against the effect of residual
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low-coverage contaminant reads in genomic regions lacking genuine HIV reads. By default this is 15,
but this is likely to need adjusting for different datasets. (See the tool LinkIdentityToCoverage.py in
section 3.)

2.4 Aligning Multiple Consensuses

Since we know how the consensus aligns to the reference used for mapping, and we know how that reference
(constructed from the contigs) aligns to the input alignment of existing references, we can construct a
global alignment of the consensuses from all samples merely by coordinate translation, negating the need
for further alignment and manual curation. Two things must be excised from the consensus for this global
alignment reconstruction: insertions present in the majority of reads but not in their tailored reference
(which are rare, since the reference is constructed from the contigs which are constructed from the reads),
and insertions present in the contigs but none of the existing references (which are rare provided the set
of existing references is large and diverse). In both cases this is sequence whose alignment to the common
anchor of the existing references is not known, and so coordinate translation cannot align it.

2.5 Fully Automatic shiver

As mentioned, shiver can be run from beginning to end without the break in the middle, with the
single command shiver full auto.sh, for uses where visually checking the contigs is impractical. This
begins with separation of contigs into HIV (those with BLASTN hits) and contamination as previously.
Subsequent steps are as follows.

1. The need for contig correction is checked, but correction is not performed: if it is needed, processing
stops. Blind trust in the accuracy of an automated alignment of contigs cut into pieces based on
evidence of structural problems would be trust misplaced.

2. Each HIV contig is now certain to have a single BLASTN hit (discarding any smaller hits wholly
contained inside others). That hit is checked to span some minimum fraction of the contig length (by
default 90%) as a guard against contigs containing containing some erroneous or foreign sequence;
otherwise processing stops.

3. Multiple sequence alignment is performed with these contigs and just one of the existing reference
sequences, for each of the existing reference sequences separately.

4. For each such alignment, generated both with regular mafft and with mafft --addfragments, we
calculate the fractional agreement between the flattened contigs and the reference, i.e. the fraction
of positions spanned by the reference and at least one contig where the reference and the longest
contig agree. Misalignment is penalised in this score because gaps inside contigs are taken as genuine
deletions.

5. For the alignment with the highest score, the maximum gap fraction amongst the contigs in the
alignment (i.e. the fraction of positions inside the contig that are gaps) is checked to be below a
user-specified threshold (the default is 5%, based on analysis of thousands of such alignments that
we visually checked) as a further guard against misalignment.

6. The contigs are flattened using this single existing reference to fill in any gaps between them,
generating the mapping reference tailored for this sample.

Aligning contigs to the references one at a time (step 3) is simpler for the alignment algorithm than
aligning to all of them at once, and means that even if misalignment occurs for what is truly the closest
reference to the contigs, the alignment to the second closest can be used instead. Trimming of low-
quality bases, trimming of adapter and primer sequences, removal of contaminant reads and mapping
to the tailored reference all occur as described previously. For samples that cannot be processed fully
automatically this way – when contig correction is required, or a contig is spanned by too small a BLASTN

hit, or too many gaps are present after alignment – the main mode of shiver is available (for which we
advise inspection of the aligned contigs).

As argued earlier, we advocate visually inspecting the aligned contigs, i.e. running the two-command
implementation of shiver (with the check occurring between the commands). This also has the advantage
of working for all samples, whereas shiver full auto.sh will not proceed if problems with the contigs
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or their alignment are detected. shiver full auto.sh also does not produce a global alignment of
all consensuses to each other, because the coordinate translation procedure allowing its construction
is derived from each sample’s alignment of contigs to all of the references at once. That alignment is
produced for the two-command implementation of shiver, but step 3 above aligns contigs to references
one at a time.

SI 3 Sample Reprocessing and Analysis

Individual steps from shiver can be run with stand-alone command line tools, for ease of reapplication
elsewhere. For example CorrectContigs.py is run with a file of contigs and a file of their BLASTN hits to
some set of references, and corrects the contigs by cutting, trimming and reverse complementing where
needed. Also included in shiver are command-line tools for easy analysis and modification of sample
output without rerunning the whole pipeline:

• Two parameters specified in the configuration file are a minimum coverage required to call a base
(below this coverage, the character ‘?’ is used) and a larger minimum coverage required to use
upper case instead of lower, as an easy signal of increased confidence. (Note that decreasing these
parameters will, in general, allow bases to be called at more positions, giving a longer consensus.
However there is a trade-off: where there are fewer reads, the effect of contaminant reads on
the consensus may be greater.) To regenerate a consensus with new values of these parameters,
CallConsensus.py can be run on a sample’s base frequencies file. To regenerate a coordinate-
translated version of this consensus for the global alignment (of all consensuses produced by shiver),
TranslateSeqForGlobalAln.py can be run on the consensus.

• Another parameter in the configuration file is the minimum read identity – the fraction of bases
in the read which are mapped and agree with the reference – required for a read to be consid-
ered mapped, and so retained in the BAM file. If you wish to increase this after completion
of shiver, reads with an identity below your new higher threshold can be discarded by running
RemoveDivergentReads.py on a BAM file. Running shiver reprocess bam.sh on the resulting
BAM file (or indeed any BAM file) implements just the last steps in shiver, namely generating
pileup, calculating the base frequencies, and calling the consensus.

• FindNumMappedBases.py calculates the total number of mapped bases in a BAM file (where read
length is constant this equals the number of mapped reads multiplied by read length, minus the
total length of sequence clipped from reads), optionally binned by read identity. In the absence of
mapped contaminant reads, and all else being equal, mapping to a reference which is closer to the
true consensus should map more bases and mapped reads should have higher identities.

• FindClippingHotSpots.py counts, at each position in the genome, the number and percentage of
reads that are clipped from that position to their left or right end. Having many such reads is a
warning sign of the kind of biased loss of information shown in Figure 2B.

• FindSubSeqsInAlignment.py finds the location of specified sub-sequences in an alignment (allowing
for gaps).

• LinkIdentityToCoverage.py finds, for each different coverage encountered when considering all
positions in a BAM file, the mean read identity at such positions. The mean read identity tends to
be lower at positions of low coverage due to a background of contaminant reads, which differ from
the reference by virtue of being contamination, but which are nevertheless similar enough to be
mapped. Quantifying the decline in identity at low coverage helps inform what coverage threshold
is appropriate for a given data set.

• AlignMoreSeqsToPairWithMissingCoverage.py allows more sequences to be added to a pairwise
alignment in which one sequence contains missing coverage (such as a consensus and its reference),
correctly maintaining the distinction between gaps (indicating a deletion) and missing coverage.

• AlignBaseFreqFiles.py aligns not two sequences, but two of the csv-format base frequency files
output by shiver. Optionally a similarity metric is calculated at each position in the alignment,
between 0 (no agreement on which bases/gaps are present) and 1 (perfect agreement on which
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bases/gaps are present and on their proportions). This allows comparison not just of consensus
sequences between two samples but also of minority variants.

• ConvertAlnToColourCodes.py converts each base in a sequence alignment into a colour code in-
dicating agreement with the consensus and indels; AlignmentPlotting.R takes such colour codes
and visualises the alignment. These two scripts were used to produce the plots of Supplementary
Information sections 4 and 5.

• QuantifyPairwiseIndels.py considers all possible pairs of sequences in an alignment and calcu-
lates the sizes and positions of relative indels (i.e. ignoring positions at which both have a gap). It
was used to make Figure 3.

• Finally some simple tools for convenience: FindSeqsInFasta.py extracts named sequences from a
fasta file, with options including gap stripping, returning only windows of the sequences, and invert-
ing the search; PrintSeqLengths.py prints sequence lengths with or without gaps; SplitFasta.py
splits a fasta file into one file per sequence therein.
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Figure S1: the number of HIV sequences available from the Los Alamos National Laboratory database
on 11th Oct 2017 with sampling year and sequencing platform information available, as a function of
minimum sampling year for inclusion (i.e. restricting the included sequences to increasingly recent ones).
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Figure S2: As Fig. S1 but showing the fraction for each platform.
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Figure S3: the number of HIV sequences available from the Los Alamos National Laboratory database
on 11th Oct 2017 with sequencing platform information available, as a function of minimum sequence
length for inclusion (i.e. restricting the included sequences to increasingly long ones).
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Figure S4: As Fig. S3 but showing the fraction for each platform.
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SI 2 Our Method in More Detail

shiver is under continuing development; if at a later date description here contradicts descriptions at
github.com/ChrisHIV/shiver, the latter has precedence.

2.1 Existing References

An alignment of existing reference sequences is required as input for shiver. Construction of a custom
reference for mapping involves identifying the existing references that are closest to the sample under
consideration. The greater the number and diversity of existing references given as input, the denser
and broader the coverage of sequence space is, and the closer the closest reference is expected to be,
with corresponding benefits for the accuracy of the results. However these existing references should be
aligned to each other accurately, in order for the addition of each sample’s contigs to the alignment to be
meaningful; this means that producing such an input by automatically aligning a large number of diverse
sequences without checking the results would be a bad idea. You will use this alignment as input for
every sample in a dataset processed by shiver, and so we advise putting a little thought into sequence
selection and manually curating the alignment if needed.

2.2 Constructing a Tailored Reference Using the Contigs

Custom reference construction begins with contig preprocessing as follows. Matches between the contigs
and any existing reference from the alignment are searched for using BLASTN with default settings, except
for the -max target seqs 1 option (specifying that all reported hits are to a single reference only), and
with -word size set to 17 (this can be changed in shiver’s configuration file). Contaminant sequence
is inevitable in high-throughput NGS; any contig that has no BLASTN hit to any of the HIV references is
taken to be contamination, and is put aside for later use, leaving contigs that are putatively HIV. The
BLASTN results are used to correct the contigs in three ways.

1. Where a single contig has multiple BLASTN hits (discarding any hit wholly contained inside another
hit), we consider this evidence that the contig is spliced – concatenating two separated regions of
the genome – due to errors in silico or during sequencing, as mentioned in the introduction. We
correct this by cutting the contig into separate contigs at the midpoint between the hits.

2. We trim off any part of the contig that was not spanned by a BLASTN hit. The ends of contigs are by
definition points at which the assembler has been unable to continue extending the sequence, either
because of lack of reads, or because the within-sample diversity has become too great for a single,
meaningful, representative sequence to be chosen. The latter possibility also means erroneous bases
are more common in short stretches of sequence at the end of a contig. Trimming such sequence
from the ends of contigs means the corresponding sequence from the closest existing reference will be
used instead, giving a better reference for mapping. (Some assembly algorithms trim a fixed length
from the ends of contigs for precisely this reason; however trimming a variable length dependent on
its match to known sequence is clearly preferable.)

3. Any contig whose BLASTN hit is in the opposite orientation is reverse-complemented. If the assembler
does not orientate the contigs, on average half of them will be in the reverse orientation. IVA

orientates contigs such that the longest open reading frame is on the forward strand, however for
very short contigs this may fail. In the process of assembling a spliced contig, an assembler may
concatenate different regions in different orientations; shiver considers whether each separate part
of a split contig requires reverse-complementation.

Contigs are then aligned to the existing reference alignment using MAFFT, trying both --add and
--addfragments modes and using the one with the smallest maximum gap fraction (the maximum
calculated over all contigs in each alignment). After alignment, a contig found to have an overly large
internal deletion (by default 160bp) is split into two separate contigs at that point. This has the same
role as BLASTN-based correction step 1 above, serving as a backup.

The alignment of contigs to the set of existing references should be visually inspected at this point.
For HIV sequences, reference [1] states that “Algorithmic alignment does not necessarily retrieve the best
alignment. It is important to always verify whether the sequence data are aligned unambiguously and,
if necessary, manually correct the alignment.” Reference [2] echoes this for any evolving pathogen: “the
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‘best’ alignment chosen by an alignment program is not necessarily the ‘true’ alignment. . . Alignment
quality should also be inspected manually in a visualisation program”. The commonness of indels in HIV
makes alignment more difficult, as does the fact that the contigs may be an imperfect representation of
the true sample even after correction. We used Geneious [3] for sequence visualisation and editing where
needed.

As well as revealing alignment error, inspection of the aligned contigs allows the user to check for any
remaining problems with the contigs. We suggest that in general the user inspects both the alignment
of the existing references with the raw HIV contigs (before any correction by shiver), and the alignment
of the existing references with the corrected HIV contigs, as a check that all shiver’s modifications of
the contigs are desired. An example of when this might not be the case is when the sample contains an
indel not observed in the existing reference set, that is large enough to cause the contig to be split in
two at that point, but which the user thinks might be genuine rather than an a misassembly (through
previous/expert knowledge, or perhaps simply observing the same indel in multiple samples in a dataset).
With sufficiently accurate mapping, reads will map here correctly whether or not the reference constructed
from the contigs contains the indel, making the question moot; however with mapping inaccuracies of
the kind shown in Figure 2 possible, it’s best to get the reference’s structure as correct as possible before
mapping.

Using the alignment of contigs to existing references, the set of contigs is flattened into a single
sequence as follows. At positions covered by one contig, its base (or gap character, for a deletion) is
used. At positions covered by multiple contigs, we use whatever the longest contig has (be it base or
gap). We used this heuristic expecting that, where sufficiently distinct haplotypes exist to result in
multiple contigs covering the same place, haplotypes supported by a higher depth of reads would tend to
be assembled into longer contigs. The sequence resulting from this flattening of the contigs is compared
to each existing reference in the alignment in turn: we count towards similarity shared bases and gaps
within contigs (known deletions), but not gaps between contigs (missing information). The existing
references are ranked by their similarity to the contigs. As existing references have variable lengths (the
long terminal repeat regions that flank the clinical genome are sometimes sequenced only partially or
not at all), the closest reference is extended outwards using any overhanging sequence from the second
closest reference, then the third longest sequence etc. terminating when both edges of the alignment are
reached. This sequence – the elongated closest reference – is used to fill in any gaps between (but not
inside of) the flattened contigs. This completes production of the reference tailored for this sample.

2.3 Preparing and Mapping the Reads

Before mapping to this reference, the reads are trimmed and cleaned as follows. Adapters, primers and
low quality bases are trimmed using Trimmomatic and Fastaq. We then consider contaminant reads from
non-HIV sources. Most of these would presumably be discarded by mapping to an HIV reference, due to
lack of similarity. However there is ample opportunity for traces of human DNA to end up in a sample,
and sequence of endogenous retroviruses in human DNA may resemble HIV. As a guard against this, and
against any other contamination resembling HIV, we use BLASTN to find all read pairs that are a better
match to one of the contigs previously found to be contamination, than to the tailored reference. These
pairs are discarded.

The cleaned reads are mapped to the tailored reference, using SMALT by default (with BWA and bowtie

as optional alternatives), giving a file in BAM format. Using SAMtools the BAM file is read into pileup
format, which is parsed to give base frequencies at each position in the genome. Note that within-host
diversity does not consist exclusively of point mutations: indels can be present in some reads and not
others (Fig. 7 is an example), which must be dealt with in the pileup. Where some reads have a deletion
relative to the reference and others do not, the deletion/gap character can simply be considered as a fifth
base whose frequency can be counted like the others. Where some reads have an insertion relative to the
reference and others do not, or more generally where insertions of two or more sizes are present, we find
the most common insertion size and, inside that insertion, consider only those reads with an insertion of
that size (thus avoiding any ambiguity in the alignment of the inserted sequences to each other). Finally,
the base frequency file is parsed to call the consensus base at each position. By default the most common
base is called to give the consensus, using an ambiguity code only for an exact tie in the frequency of
two or more bases; optionally ambiguity codes can be used more readily, when the frequency of the most
common base or bases is below a specified threshold. A consensus base is only called if the coverage
equals or exceeds a minimum threshold specified by the user, to protect against the effect of residual
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low-coverage contaminant reads in genomic regions lacking genuine HIV reads. By default this is 15,
but this is likely to need adjusting for different datasets. (See the tool LinkIdentityToCoverage.py in
section 3.)

2.4 Aligning Multiple Consensuses

Since we know how the consensus aligns to the reference used for mapping, and we know how that reference
(constructed from the contigs) aligns to the input alignment of existing references, we can construct a
global alignment of the consensuses from all samples merely by coordinate translation, negating the need
for further alignment and manual curation. Two things must be excised from the consensus for this global
alignment reconstruction: insertions present in the majority of reads but not in their tailored reference
(which are rare, since the reference is constructed from the contigs which are constructed from the reads),
and insertions present in the contigs but none of the existing references (which are rare provided the set
of existing references is large and diverse). In both cases this is sequence whose alignment to the common
anchor of the existing references is not known, and so coordinate translation cannot align it.

2.5 Fully Automatic shiver

As mentioned, shiver can be run from beginning to end without the break in the middle, with the
single command shiver full auto.sh, for uses where visually checking the contigs is impractical. This
begins with separation of contigs into HIV (those with BLASTN hits) and contamination as previously.
Subsequent steps are as follows.

1. The need for contig correction is checked, but correction is not performed: if it is needed, processing
stops. Blind trust in the accuracy of an automated alignment of contigs cut into pieces based on
evidence of structural problems would be trust misplaced.

2. Each HIV contig is now certain to have a single BLASTN hit (discarding any smaller hits wholly
contained inside others). That hit is checked to span some minimum fraction of the contig length (by
default 90%) as a guard against contigs containing containing some erroneous or foreign sequence;
otherwise processing stops.

3. Multiple sequence alignment is performed with these contigs and just one of the existing reference
sequences, for each of the existing reference sequences separately.

4. For each such alignment, generated both with regular mafft and with mafft --addfragments, we
calculate the fractional agreement between the flattened contigs and the reference, i.e. the fraction
of positions spanned by the reference and at least one contig where the reference and the longest
contig agree. Misalignment is penalised in this score because gaps inside contigs are taken as genuine
deletions.

5. For the alignment with the highest score, the maximum gap fraction amongst the contigs in the
alignment (i.e. the fraction of positions inside the contig that are gaps) is checked to be below a
user-specified threshold (the default is 5%, based on analysis of thousands of such alignments that
we visually checked) as a further guard against misalignment.

6. The contigs are flattened using this single existing reference to fill in any gaps between them,
generating the mapping reference tailored for this sample.

Aligning contigs to the references one at a time (step 3) is simpler for the alignment algorithm than
aligning to all of them at once, and means that even if misalignment occurs for what is truly the closest
reference to the contigs, the alignment to the second closest can be used instead. Trimming of low-
quality bases, trimming of adapter and primer sequences, removal of contaminant reads and mapping
to the tailored reference all occur as described previously. For samples that cannot be processed fully
automatically this way – when contig correction is required, or a contig is spanned by too small a BLASTN

hit, or too many gaps are present after alignment – the main mode of shiver is available (for which we
advise inspection of the aligned contigs).

As argued earlier, we advocate visually inspecting the aligned contigs, i.e. running the two-command
implementation of shiver (with the check occurring between the commands). This also has the advantage
of working for all samples, whereas shiver full auto.sh will not proceed if problems with the contigs
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or their alignment are detected. shiver full auto.sh also does not produce a global alignment of
all consensuses to each other, because the coordinate translation procedure allowing its construction
is derived from each sample’s alignment of contigs to all of the references at once. That alignment is
produced for the two-command implementation of shiver, but step 3 above aligns contigs to references
one at a time.

SI 3 Sample Reprocessing and Analysis

Individual steps from shiver can be run with stand-alone command line tools, for ease of reapplication
elsewhere. For example CorrectContigs.py is run with a file of contigs and a file of their BLASTN hits to
some set of references, and corrects the contigs by cutting, trimming and reverse complementing where
needed. Also included in shiver are command-line tools for easy analysis and modification of sample
output without rerunning the whole pipeline:

• Two parameters specified in the configuration file are a minimum coverage required to call a base
(below this coverage, the character ‘?’ is used) and a larger minimum coverage required to use
upper case instead of lower, as an easy signal of increased confidence. (Note that decreasing these
parameters will, in general, allow bases to be called at more positions, giving a longer consensus.
However there is a trade-off: where there are fewer reads, the effect of contaminant reads on
the consensus may be greater.) To regenerate a consensus with new values of these parameters,
CallConsensus.py can be run on a sample’s base frequencies file. To regenerate a coordinate-
translated version of this consensus for the global alignment (of all consensuses produced by shiver),
TranslateSeqForGlobalAln.py can be run on the consensus.

• Another parameter in the configuration file is the minimum read identity – the fraction of bases
in the read which are mapped and agree with the reference – required for a read to be consid-
ered mapped, and so retained in the BAM file. If you wish to increase this after completion
of shiver, reads with an identity below your new higher threshold can be discarded by running
RemoveDivergentReads.py on a BAM file. Running shiver reprocess bam.sh on the resulting
BAM file (or indeed any BAM file) implements just the last steps in shiver, namely generating
pileup, calculating the base frequencies, and calling the consensus.

• FindNumMappedBases.py calculates the total number of mapped bases in a BAM file (where read
length is constant this equals the number of mapped reads multiplied by read length, minus the
total length of sequence clipped from reads), optionally binned by read identity. In the absence of
mapped contaminant reads, and all else being equal, mapping to a reference which is closer to the
true consensus should map more bases and mapped reads should have higher identities.

• FindClippingHotSpots.py counts, at each position in the genome, the number and percentage of
reads that are clipped from that position to their left or right end. Having many such reads is a
warning sign of the kind of biased loss of information shown in Figure 2B.

• FindSubSeqsInAlignment.py finds the location of specified sub-sequences in an alignment (allowing
for gaps).

• LinkIdentityToCoverage.py finds, for each different coverage encountered when considering all
positions in a BAM file, the mean read identity at such positions. The mean read identity tends to
be lower at positions of low coverage due to a background of contaminant reads, which differ from
the reference by virtue of being contamination, but which are nevertheless similar enough to be
mapped. Quantifying the decline in identity at low coverage helps inform what coverage threshold
is appropriate for a given data set.

• AlignMoreSeqsToPairWithMissingCoverage.py allows more sequences to be added to a pairwise
alignment in which one sequence contains missing coverage (such as a consensus and its reference),
correctly maintaining the distinction between gaps (indicating a deletion) and missing coverage.

• AlignBaseFreqFiles.py aligns not two sequences, but two of the csv-format base frequency files
output by shiver. Optionally a similarity metric is calculated at each position in the alignment,
between 0 (no agreement on which bases/gaps are present) and 1 (perfect agreement on which
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bases/gaps are present and on their proportions). This allows comparison not just of consensus
sequences between two samples but also of minority variants.

• ConvertAlnToColourCodes.py converts each base in a sequence alignment into a colour code in-
dicating agreement with the consensus and indels; AlignmentPlotting.R takes such colour codes
and visualises the alignment. These two scripts were used to produce the plots of Supplementary
Information sections 4 and 5.

• QuantifyPairwiseIndels.py considers all possible pairs of sequences in an alignment and calcu-
lates the sizes and positions of relative indels (i.e. ignoring positions at which both have a gap). It
was used to make Figure 3.

• Finally some simple tools for convenience: FindSeqsInFasta.py extracts named sequences from a
fasta file, with options including gap stripping, returning only windows of the sequences, and invert-
ing the search; PrintSeqLengths.py prints sequence lengths with or without gaps; SplitFasta.py
splits a fasta file into one file per sequence therein.
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SI 6: Members of the BEEHIVE Cohorts 
 
Swiss HIV cohort 
 
The member of the Swiss HIV Cohort are: Aubert V, Battegay M, Bernasconi E, Böni J, Braun DL, 
Bucher HC, Burton-Jeangros C, Calmy A, Cavassini M, Dollenmaier G, Egger M, Elzi L, Fehr J, 
Fellay J, Furrer H (Chairman of the Clinical and Laboratory Committee), Fux CA, Gorgievski M, 
Günthard H (President of the SHCS), Haerry D (deputy of “Positive Council”), Hasse B, Hirsch HH, 
Hoffmann M, Hösli I, Kahlert C, Kaiser L, Keiser O, Klimkait T, Kouyos R, Kovari H, Ledergerber B, 
Martinetti G, Martinez de Tejada B, Marzolini C, Metzner K, Müller N, Nadal D, Nicca D, Pantaleo 
G, Rauch A (Chairman of the Scientific Board), Regenass S, Rudin C (Chairman of the Mother & 
Child Substudy), Schöni-Affolter F (Head of Data Centre), Schmid P, Speck R, Stöckle M, Tarr P, 
Trkola A, Vernazza P, Weber R, Yerly S. 
 
 
ATHENA cohort (The Netherlands) 
 
CLINICAL CENTRES: 
* denotes site coordinating physician 
Academic Medical Centre of the University of Amsterdam (AMC-UvA): HIV treating 
physicians: M. van der Valk*, S.E. Geerlings, M.H. Godfried, A. Goorhuis, J.W. Hovius, J.T.M. van 
der Meer, T.W. Kuijpers, F.J.B. Nellen, DT. van der Poll, J.M. Prins, P. Reiss, H.J. M. van Vugt, 
W.J. Wiersinga, F.W.M.N. Wit. HIV nurse consultants: M. van Duinen, J. van Eden, A.M.H. van 
Hes, M. Mutschelknauss, H.E. Nobel, F.J.J. Pijnappel,  A.M. Weijsenfeld. HIV clinical 
virologists/chemists: S. Jurriaans, N.K.T. Back, H.L. Zaaijer, B. Berkhout, M.T.E. Cornelissen, C.J. 
Schinkel, K.C. Wolthers. Admiraal De Ruyter Ziekenhuis, Goes: HIV treating physicians: M. van 
den Berge, A. Stegeman. HIV nurse consultants: S. Baas, L. Hage de Looff. HIV clinical 
virologists/chemists: B Wintermans, J Veenemans. Catharina Ziekenhuis, Eindhoven: HIV 
treating physicians: M.J.H. Pronk*, H.S.M. Ammerlaan. HIV nurse consultants: E.S. de Munnik, 
H.A.M. van Beek. HIV clinical virologists/chemists: A.R. Jansz, J. Tjhie, M.C.A. Wegdam, B. 
Deiman, V. Scharnhorst. Elisabeth-TweeSteden Ziekenhuis, Tilburg: HIV treating physicians: 
M.E.E. van Kasteren*, A.E. Brouwer. HIV nurse consultants: R. van Erve, B.A.F.M. de Kruijf-van 
de Wiel, S.Keelan-Pfaf, B. van der Ven. Data collection: B.A.F.M. de Kruijf-van de Wiel, B. van der 
Ven.  HIV clinical virologists/chemists: A.G.M. Buiting, P.J. Kabel, D.Versteeg. Erasmus MC, 
Rotterdam: HIV treating physicians: M.E. van der Ende*, H.I. Bax, E.C.M. van Gorp, J.L. Nouwen, 
B.J.A. Rijnders, C.A.M. Schurink, A. Verbon, T.E.M.S. de Vries-Sluijs, N.C. de Jong-Peltenburg. 
HIV nurse consultants: N. Bassant, J.E.A. van Beek, M. Vriesde, L.M. van Zonneveld. Data 
collection: H.J. van den Berg-Cameron, J. de Groot, M. de Zeeuw-de Man. HIV clinical 
virologists/chemists: C.A.B. Boucher, M.P.G Koopmans, J.J.A van Kampen, S.D. Pas. 
Flevoziekenhuis, Almere: HIV treating physicians: J. Branger*, A. Rijkeboer-Mes. HIV nurse 
consultant: C.J.H.M. Duijf-van de Ven. HagaZiekenhuis, Den Haag: HIV treating physicians: E.F. 
Schippers*, C. van Nieuwkoop. HIV nurse consultants: J.M. van IJperen, J. Geilings. Data 
collection: G. van der Hut. HIV clinical virologist/chemist: N.D. van Burgel. Hiv Focus Centrum 
(DC Klinieken): HIV treating physicians: A. van Eeden*. HIV nurse consultants: W. Brokking, M. 
Groot, L.J.M. Elsenburg. HIV clinical virologists/chemists: M. Damen, I.S. Kwa. HMC (Haaglanden 
Medisch Centrum), Den Haag: HIV treating physicians: E.M.S. Leyten*, L.B.S. Gelinck. HIV 
nurse consultants: A.Y. van Hartingsveld, C. Meerkerk, G.S. Wildenbeest. HIV clinical 
virologists/chemists: E. Heikens. Isala, Zwolle: HIV treating physicians: P.H.P. Groeneveld*, J.W. 



 

 

Bouwhuis, A.J.J. Lammers. HIV nurse consultants: S. Kraan, A.G.W. van Hulzen. Data collection: 
G.L. van der Bliek, P.C.J. Bor. HIV clinical virologists/chemists: P. Bloembergen, M.J.H.M. 
Wolfhagen, G.J.H.M. Ruijs. Leids Universitair Medisch Centrum, Leiden: HIV treating 
physicians: F.P. Kroon*, M.G.J. de Boer, H. Scheper, H. Jolink, A.M. Vollaard. HIV nurse 
consultants: W. Dorama, N. van Holten. HIV clinical virologists/chemists: E.C.J. Claas, E. Wessels. 
Maasstad Ziekenhuis, Rotterdam: HIV treating physicians: J.G. den Hollander*, K. Pogany, A. 
Roukens. HIV nurse consultants: M. Kastelijns, J.V. Smit, E. Smit, D. Struik-Kalkman, C. Tearno. 
Data collection: T. van Niekerk. HIV clinical virologists/chemists: O. Pontesilli. Maastricht UMC+, 
Maastricht: HIV treating physicians: S.H. Lowe*, A.M.L. Oude Lashof, D. Posthouwer. HIV nurse 
consultants: R.P. Ackens, K. Burgers, J. Schippers. Data collection: B. Weijenberg-Maes. HIV 
clinical virologists/chemists: I.H.M. van Loo, T.R.A. Havenith. MC Slotervaart, Amsterdam: HIV 
treating physicians: J.W. Mulder*, S.M.E. Vrouenraets, F.N. Lauw. HIV nurse consultants: M.C. 
van Broekhuizen, D.J. Vlasblom. HIV clinical virologists/chemists: P.H.M. Smits. MC Zuiderzee, 
Lelystad: HIV treating physicians: S. Weijer*, R. El Moussaoui. HIV nurse consultant: A.S. Bosma. 
Medisch Centrum Leeuwarden, Leeuwarden: HIV treating physicians: M.G.A.van Vonderen*, 
D.P.F. van Houte, L.M. Kampschreur. HIV nurse consultants: K. Dijkstra, S. Faber. HIV clinical 
virologists/chemists: J Weel. Medisch Spectrum Twente, Enschede: HIV treating physicians: 
G.J. Kootstra*, C.E. Delsing. HIV nurse consultants: M. van der Burg-van de Plas, H. Heins. Data 
collection: E. Lucas. Noordwest Ziekenhuisgroep, Alkmaar: HIV treating physicians: W. 
Kortmann*, G. van Twillert*, R. Renckens. HIV nurse consultant and data collection: D. Ruiter-
Pronk, F.A. van Truijen-Oud. HIV clinical virologists/chemists: J.W.T. Cohen Stuart, E.P. IJzerman, 
R. Jansen, W. Rozemeijer W. A. van der Reijden. OLVG, Amsterdam: HIV treating physicians: K. 
Brinkman*, G.E.L. van den Berk, W.L. Blok, P.H.J. Frissen, K.D. Lettinga W.E.M. Schouten, J. 
Veenstra. HIV nurse consultants: C.J. Brouwer, G.F. Geerders, K. Hoeksema, M.J. Kleene, I.B. 
van der Meché, M. Spelbrink, A.J.M. Toonen, S. Wijnands. HIV clinical virologists: D. Kwa. Data 
collection: R. Regez (coordinator). Radboudumc, Nijmegen: HIV treating physicians: R. van 
Crevel*, M. Keuter, A.J.A.M. van der Ven, H.J.M. ter Hofstede, A.S.M. Dofferhoff, J. Hoogerwerf. 
HIV nurse consultants:  K.J.T. Grintjes-Huisman, M. de Haan, M. Marneef, A. Hairwassers. HIV 
clinical virologists/chemists: J. Rahamat-Langendoen, F.F. Stelma. HIV clinical pharmacology 
consultant: D. Burger. Rijnstate, Arnhem: HIV treating physicians: E.H. Gisolf*, R.J. Hassing, M. 
Claassen. HIV nurse consultants: G. ter Beest, P.H.M. van Bentum, N. Langebeek. HIV clinical 
virologists/chemists: R. Tiemessen, C.M.A. Swanink. Spaarne Gasthuis, Haarlem: HIV treating 
physicians: S.F.L. van Lelyveld*, R. Soetekouw. HIV nurse consultants: L.M.M. van der Prijt, J. van 
der Swaluw. Data collection: N. Bermon. HIV clinical virologists/chemists: W.A. van der Reijden, R. 
Jansen, B.L. Herpers, D.Veenendaal. Medisch Centrum Jan van Goyen, Amsterdam: HIV 
treating physicians: D.W.M. Verhagen. HIV nurse consultants: M. van Wijk. Universitair Medisch 
Centrum Groningen, Groningen: HIV treating physicians: W.F.W. Bierman*, M. Bakker, J. 
Kleinnijenhuis, E. Kloeze, Y. Stienstra, K.R. Wilting, M. Wouthuyzen-Bakker. HIV nurse 
consultants: A. Boonstra, P.A. van der Meulen, D.A. de Weerd. HIV clinical virologists/chemists: 
H.G.M. Niesters, C.C. van Leer-Buter, M. Knoester. Universitair Medisch Centrum Utrecht, 
Utrecht: HIV treating physicians: A.I.M. Hoepelman*, J.E. Arends, R.E. Barth, A.H.W. Bruns, P.M. 
Ellerbroek, T. Mudrikova, J.J. Oosterheert, E.M. Schadd, M.W.M. Wassenberg, M.A.D. van Zoelen. 
HIV nurse consultants: K. Aarsman, D.H.M. van Elst-Laurijssen, I. de Kroon, C.S.A.M. van Rooijen. 
Data collection: M. van Berkel, C.S.A.M. van Rooijen. HIV clinical virologists/chemists: R. 
Schuurman, F. Verduyn-Lunel, A.M.J. Wensing. VUmc, Amsterdam: HIV treating physicians: 
E.J.G. Peters*, M.A. van Agtmael, M. Bomers. HIV nurse consultants: M. Heitmuller, L.M. Laan. 
HIV clinical virologists/chemists: C.W. Ang, R. van Houdt, A.M. Pettersson, C.M.J.E. 
Vandenbroucke-Grauls. 
COORDINATING CENTRE: 
Director: P. Reiss. Data analysis: D.O. Bezemer, A.I. van Sighem, C. Smit, F.W.M.N. Wit, T.S. 
Boender. Data management and quality control: S. Zaheri, M. Hillebregt, A. de Jong. Data 
monitoring: D. Bergsma, S. Grivell, A. Jansen, M. Raethke, R. Meijering, T. Rutkens. Data 
collection: L. de Groot, M. van den Akker, Y. Bakker, M. Bezemer, E. Claessen, A. El Berkaoui, J. 
Geerlinks, J. Koops, E. Kruijne, C. Lodewijk, R. van der Meer, L. Munjishvili, F. Paling, B. Peeck, 



 

 

C. Ree, R. Regtop, Y. Ruijs, M. Schoorl, A. Timmerman, E. Tuijn, L. Veenenberg, S. van der Vliet, 
A. Wisse, E.C. de Witte, T. Woudstra. Patient registration: B. Tuk. 
 
 
Antwerp cohort (Belgium) 
 
Data extraction for the Antwerp Cohort is done by Maartje Van Frankenhuijsen, MD. 
  

PRIMO cohort (France): 
 
Région Sud–Est: 

-  Thierry ALLEGRE, Centre hospitalier général d’Aix en Provence, Service d’Hématologie 
-  Djamila MAKHLOUFI, Jean-Michel LIVROZET, Pierre CHIARELLO, Mathieu GODINOT, Florence 

BRUNEL-DALMAS, Sylvie GIBERT, Hôpital Edouard Herriot de Lyon, Immunologie Clinique 
-  Christian TREPO, Dominique PEYRAMOND, Patrick MIAILHES, Joseph KOFFI, Valérie 

THOIRAIN, Corinne BROCHIER, Thomas BAUDRY, Sylvie PAILHES, Lyon La Croix Rousse, 
Services d’Hépato-Gastroentérologie et des Maladies Infectieuses 

-  Alain LAFEUILLADE, Gisèle PHILIP, Gilles HITTINGER, Assi ASSI, Véronique LAMBRY, Hôpital 
Font-Pré de Toulon, Médecine Interne, Hémato-Infectiologie 

-  Eric ROSENTHAL, Alissa NAQVI, Brigitte DUNAIS, Eric CUA, Christian PRADIER, Jacques 
DURANT, Aline JOULIE, Hôpital L’Archet, Nice, Service de Médecine Interne, Maladies 
Infectieuses et Tropicales 

-  Denis QUINSAT, Serge TEMPESTA, Centre Hospitalier d’Antibes, Service de Médecine Interne 
-  Isabelle RAVAUX, Hôpital de la Conception de Marseille, Service des Maladies Infectieuses 
-  Isabelle POIZOT MARTIN, Olivia FAUCHER, Nicolas CLOAREC, Hôpital Sainte Marguerite de 

Marseille, Unité d'Hématologie 
-  Hélène CHAMPAGNE, Centre Hospitalier de Valence, Maladies Infectieuses et Tropicales 
-  Gilles PICHANCOURT, Centre Hospitalier Henri Duffaut d’Avignon, Service Hématologie Maladies 

Infectieuses 
Région Sud-Ouest: 

-  Philippe MORLAT, Thierry PISTONE, Fabrice BONNET, Patrick MERCIE, Isabelle FAURE, 
Mojgan HESSAMFAR, Denis MALVY, Denis LACOSTE, Marie-Carmen PERTUSA,  Marie-Anne 
VANDENHENDE, Noëlle  BERNARD, François PACCALIN, Cédric MARTELL, Julien ROGER-
SCHMELZ, Marie-Catherine RECEVEUR, Pierre DUFFAU, Denis DONDIA, Emmanuel RIBEIRO, 
Sabrina CALTADO, Hôpital Saint André de Bordeaux, Médecine Interne  

-  Didier NEAU, Michel DUPONT; Hervé DUTRONC, Frédéric DAUCHY, Charles CAZANAVE, 
Thierry PISTONE, Marc-Olivier VAREIL, Thierry PISTONE, Gaétane WIRTH, Séverine LE PUIL, 
Hôpital Pellegrin de Bordeaux, Maladies Infectieuses. 

-  Jean-Luc PELLEGRIN, Isabelle RAYMOND, Jean-François VIALLARD, Severin CHAIGNE DE 
LALANDE, Hôpital Haut Lévèque de Bordeaux, Médecine Interne et Maladies Infectieuses 

-  Daniel GARIPUY, Hôpital Joseph Ducuing de Toulouse, Médecine Interne 
-  Pierre DELOBEL, Martine OBADIA, Lise CUZIN, Muriel ALVAREZ, Noemie BIEZUNSKI, Lydie 

PORTE, Patrice MASSIP, Alexa DEBARD, Florence BALSARIN, Myriam LAGARRIGUE, Hôpital 
Purpan de Toulouse, SMIT-CISIH 

-  François PREVOTEAU DU CLARY, Christian AQUILINA, Cité de la santé Toulouse 
-  Jacques REYNES, Vincent BAILLAT, Corinne MERLE, Vincent LEMOING, Nadine ATOUI, Alain 

MAKINSON, Jean Marc JACQUET, Christina PSOMAS, Christine TRAMONI, Hôpital Gui de 
Chauliac de Montpellier, Service des Maladies Infectieuses et Tropicales 

-  Hugues AUMAITRE, Mathieu SAADA, Marie MEDUS, Martine MALET, Aurélia EDEN, Ségolène 
NEUVILLE, Milagros FERREYRA, Martine MALET, Hôpital Saint Jean de Perpignan, Service des 
Maladies Infectieuses 



 

 

-  Albert SOTTO, Claudine BARBUAT, Isabelle ROUANET, Didier LEUREILLARD, Jean-Marc 
MAUBOUSSIN, Catherine LECHICHE, Régine DONSESCO, CHU de Nîmes-Caremeau, Service 
des Maladies Infectieuses et Tropicales. 
Antilles: 

-André CABIE, Sylvie ABEL, Sandrine PIERRE-FRANCOIS, Anne-Sophie BATALA, Christophe 
CERLAND, Camille RANGOM, Nadine THERESINE, CHU Fort de France, Hôpital de Jour 

-Bruno HOEN, Isabelle LAMAURY, Isabelle FABRE, Kinda SCHEPERS, Elodie CURLIER, Rachida 
OUISSA, CHU de Pointe à Pitre/ABYMES, Service de Dermatologie / Maladies Infectieuses 

-Catherine GAUD, Carole RICAUD, Roland RODET, Guillaume WARTEL, Carmele SAUTRON, 
CHU de la Reunion, site Felix Guyon, Service d’Immunologie 
Région Est: 

-  Geneviève BECK-WIRTH, Catherine MICHEL, Charles BECK, Jean-Michel HALNA, Jakub 
KOWALCZYK, Meryem BENOMAR, Hôpital Emile Muller de Mulhouse, Hématologie Clinique 

-  Christine DROBACHEFF-THIEBAUT, Catherine CHIROUZE, Jean-François FAUCHER, François 
PARCELIER, Adeline FOLTZER, Cécile HAFFNER-MAUVAIS, Mathieu HUSTACHE MATHIEU, 
Aurélie PROUST - Hôpital St Jacques de Besançon, Service des Maladies Infectieuses et de 
Dermatologie 

-  Lionel PIROTH, Pascal CHAVANET, Michel DUONG, Marielle BUISSON, Anne WALDNER, 
Sophie MAHY, Sandrine GOHIER, Delphine CROISIER, Hôpital du Bocage de Dijon, Service des 
Maladies Infectieuses 

-  Thierry MAY, Mikael DELESTAN, Marie ANDRE, CHU de Vandoeuvre-lès-Nancy, Hôpital de 
Brabois, Service des Maladies Infectieuses et Tropicales 

-  Mahsa MOHSENI ZADEH, Martin MARTINOT, Béatrice ROSOLEN, Anne PACHART, Hôpital 
Louis PASTEUR de Colmar, Service d’Immunologie Clinique 

-  Benoît MARTHA, Noëlle JEUNET, Centre Hospitalier William Morey de Chalon Sur Saône, 
Service de Médecine Interne 

-  David REY, Christine CHENEAU, Maria PARTISANI, Michèle PRIESTER, Claudine BERNARD-
HENRY, Maria PARTISANI, Marie-Laure BATARD, Patricia FISCHER, Service le Trait d’Union, 
Hôpitaux Universitaires de Strasbourg 

-  Jean-Luc BERGER, Isabelle KMIEC, Hôpital Robert Debré, Service des Maladies Infectieuses, 
Reims. 
Région Nord: 

-Olivier ROBINEAU, Thomas HULEUX, Faïza AJANA, Isabelle ALCARAZ, Christophe ALLIENNE, 
Véronique BACLET, Agnès MEYBECK, Michel VALETTE, Nathalie VIGET, Christophe ALLIENNE,  
Emmanuelle AISSI, Raphael BIEKRE, Pauline CORNAVIN, Centre Hospitalier DRON de 
Tourcoing, Service de Maladies Infectieuses 

-Dominique MERRIEN, Jean-Christophe SEGHEZZI, Moise MACHADO, Centre Hospitalier de 
Compiègne, Service de Médecine Interne 

-Georges DIAB, C H de la Haute Vallée de l’Oise de Noyon, Service de Médecine 
Région Ouest: 

-  François RAFFI, Bénédicte BONNET, Clotilde ALLAVENA, Olivier GROSSI, Véronique 
RELIQUET, Eric BILLAUD, Cecile BRUNET, Sabelline BOUCHEZ, Pascale MORINEAU-LE 
HOUSSINE, Fabienne SAUSER, David BOUTOILLE,  Michel BESNIER, Hervé HUE, Nolwenn 
Hall, Delphine BROSSEAU, Hôtel-Dieu de Nantes, CISIH Médecine Interne 

-  Faouzi SOUALA, Christian MICHELET, Pierre TATTEVIN, Cédric ARVIEUX, Matthieu REVEST, 
Helene LEROY, Jean-Marc CHAPPLAIN, Matthieu DUPONT, Fabien FILY, SOLÈNE PATRA-DELO, 
CÉLINE LEFEUVRE,  CHRU Pontchaillou de Rennes, Clinique des Maladies Infectieuses 

-  Louis BERNARD, Frédéric BASTIDES, Pascale NAU, Hôpital Bretonneau de Tours, Service des 
maladies Infectieuses 

-  Renaud VERDON, Arnaud DE LA BLANCHARDIERE, Anne MARTIN, Philippe FERET, CH 
régional Côte de Nacre de Caen, Service de Maladies Infectieuses 

-  Loïk GEFFRAY, Hôpital Robert Bisson de Lisieux,  Service de Médecine Interne 
-  Corinne DANIEL, Jennifer ROHAN, Centre Hospitalier La Beauchée de Saint-Brieuc, Médecine 

Interne et Maladies Infectieuses 



 

 

-  Pascale FIALAIRE, Jean Marie CHENNEBAULT, Valérie RABIER, Pierre ABGUEGUEN, Sami 
REHAIEM, Centre Hospitalier Régional d’Angers, Service des Maladies Infectieuses 

-  Odile LUYCX, Mathilde NIAULT, Philippe MOREAU, Centre Hospitalier Bretagne Sud de Lorient, 
Service d’Hématologie 

-  Yves POINSIGNON, Marie GOUSSEF, Virginie MOUTON- RIOUX, Centre Hospitalier Bretagne 
Atlantique de Vannes, Service de Medecine Interne et Maladies Infectieuses 

-  Dominique HOULBERT, Sandrine ALVAREZ-HUVE, Frédérique BARBE, Sophie HARET, Centre 
Hospitalier d’Alençon, Médecine 2 

-  Philippe PERRE,Sophie LEANTEZ-NAINVILLE, Jean-Luc ESNAULT, Thomas GUIMARD, 
Isabelle SUAUD, Centre Hospitalier Départemental de La Roche sur Yon, Service de Médecine 

-  Jean-Jacques GIRARD, Véronique SIMONET, Hôpital de Lôches, Service de Médecine Interne 
-  Yasmine DEBAB, CHU Charles Nicolle de Rouen, Maladies Infectieuses et Tropicales 
-  Jean-Luc SCHMIT, CHU d’Amiens, Service des Maladies Infectieuses. 

Région Centre: 
-Christine JACOMET, Hôpital Gabriel-Montpied de Clermont Ferrand, Service des Maladies 
Infectieuses et Tropicales 

-Pierre WEINBERCK, Claire GENET, Pauline PINET, Sophie DUCROIX, Hélène DUROX, Éric 
DENES, Hôpital DUPUYTREN de Limoges, Maladies Infectieuses et Tropicales 

-Bruno ABRAHAM, Centre Hospitalier de Brive, Departement de maladies Infectieuses 
-Florence GOURDON, Centre Hospitalier de Vichy, Service de Médecine Interne 
-Odile ANTONIOTTI, Centre Hospitalier de Montluçon, Dermatologie 
Paris: 

-  Jean-Michel MOLINA, Samuel FERRET, Caroline LASCOUX-COMBE, Matthieu LAFAURIE, 
Nathalie COLIN DE VERDIERE,  Diane PONSCARME, Nathalie DE CASTRO, Alexandre ASLAN, 
Willy ROZENBAUM, Claire PINTADO, François CLAVEL, Olivier TAULERA, Caroline GATEY, 
Anne-Lise MUNIER, Sandrine GAZAIGNE, Pauline PENOT, Guillaume CONORT, Nathalie 
LEROLLE, Anne LEPLATOIS, Stéphanie BALAUSINE, Jeannine DELGADO, Hôpital Saint Louis 
de Paris, Service des Maladies Infectieuses et Tropicales 

-  Julie TIMSIT, Magda TABET, Hôpital Saint Louis de Paris, Clinique MST 
-  Laurence GERARD, Hôpital Saint Louis de Paris, Service d'Immunologie Clinique 
-  Pierre-Marie GIRARD, Odile PICARD, Jürgen TREDUP, Diane BOLLENS, Nadia VALIN, Pauline 

CAMPA, Julie BOTTERO, Benedicte LEFEBVRE, Muriel TOURNEUR, Laurent FONQUERNIE, 
Charlotte WEMMERT, Jean-Luc LAGNEAU Hôpital Saint Antoine de Paris , Service des Maladies 
Infectieuses et Tropicales 

-  Yazdan YAZDANPANAH, Bao PHUNG, Adriana PINTO, Dorothée VALLOIS, Ornella CABRAS, 
Françoise LOUNI, G. Hospitalier Bichat-Claude Bernard de Paris, Service de Maladies 
Infectieuses et Tropicales 

-  Gilles PIALOUX, Thomas LYAVANC, Valérie BERREBI, Julie CHAS, Sophie LENAGAT, Hopital 
Tenon de Paris, Service des Maladies Infectieuses 

-  Agathe RAMI, Myriam DIEMER, Maguy PARRINELLO, Audrey DEPOND, Hôpital Lariboisière de 
Paris, Service de Médecine Interne A 

-  Dominique SALMON, Loïc GUILLEVIN, Tassadit TAHI, Linda BELARBI, Pierre LOULERGUE, 
Olivier ZAK DIT ZBAR, Odile LAUNAY, Benjamin SILBERMANN, Catherine LEPORT, Laura 
ALAGNA, Marie-Pierre PIETRI, G. H. Cochin de Paris, Département de Médecine Interne 

-  Anne SIMON, Manuela BONMARCHAND, Naouel AMIRAT, François PICHON, Myriam 
KIRSTETTER, G. H. Pitié-Salpétrière de Paris, Service de Médecine Interne 

-  Christine KATLAMA, Marc Antoine VALANTIN, Roland TUBIANA, Fabienne CABY, Luminita 
SCHNEIDER, Nadine KTORZA, Ruxandra CALIN, Audrey MERLET, Saadia BEN ABDALLAH, G. 
H. Pitié-Salpétrière de Paris,  Service des Maladies Infectieuses 

-  Laurence WEISS, Martin BUISSON, Dominique BATISSE, Marina KARMOCHINE, Juliette PAVIE, 
Catherine MINOZZI, Didier JAYLE, Philippe CASTEL, Jean DEROUINEAU, Pascale 
KOUSIGNAN, Murielle ELIAZEVITCH, Isabelle PIERRE, Lio COLLIAS, Hôpital Européen Georges 
Pompidou de Paris, Service d'Immunologie Clinique 



 

 

-  Jean-Paul VIARD, Jacques GILQUIN, Alain SOBEL, Laurence SLAMA, Jade GHOSN, Blanka 
HADACEK, Nugyen THU-HUYN, Audrey MERLET, Lella NAIT-IGHIL, Agnes CROS, Aline 
MAIGNAN, Hôtel Dieu de Paris, Centre de Diagnostic et Thérapeutique 

-  Claudine DUVIVIER, Paul Henri CONSIGNY, Fanny LANTERNIER, Michka SHOAI-TEHRANI, 
Fatima TOUAM, Saadia JERBI, Centre Médical de l’Institut Pasteur de Paris, Service des Maladies 
Infectieuses 

-  Loïc BODARD, Corinne JUNG, Institut Mutualiste Montsouris de Paris, Département de Médecine 
Interne 
Région Parisienne: 

-  Cécile GOUJARD, Yann QUERTAINMONT, Martin DURACINSKY, Olivier SEGERAL, Arnaud 
BLANC, Delphine PERETTI, Antoine CHERET, Christelle CHANTALAT, Marie Josée DULUCQ, 
Hôpital de Bicêtre, Médecine Interne 

-  Yves LEVY, Jean Daniel LELIEVRE, Anne Sophie LASCAUX, Cécile DUMONT, Hôpital Henri 
Mondor de Créteil, Immunologie Clinique 

-  François BOUE, Véronique CHAMBRIN, Sophie ABGRALL, Imad KANSAU, Mariem RAHO-
MOUSSA, Hôpital Antoine Béclère de Clamart, Médecine Interne et Immunologie Clinique 

-  Pierre DE TRUCHIS, Aurélien DINH, Benjamin DAVIDO, Dhiba MARIGOT, Huguette BERTHE, 
Hôpital Raymond Poincaré de Garches, Service des Maladies Infectieuses et Tropicales 

-  Alain DEVIDAS, Pierre CHEVOJON, Amélie CHABROL, Nouara AGHER, Hôpital de Corbeil-
Essonnes, Service Hématologie 

-  Yvon LEMERCIER, Fabrice CHAIX, Isabelle TURPAULT, Centre Hospitalier Général de 
Longjumeau, Service de Médecine Interne 

-  Olivier BOUCHAUD, Patricia HONORE, Hôpital Avicenne de Bobigny, Maladies Infectieuses et 
Tropicales 

-  Elisabeth ROUVEIX, Evelyne REIMANN, Hôpital Ambroise Paré de Boulogne, Médecine Interne 
-  Alix GREDER BELAN, Claire GODIN COLLET, Safia SOUAK, Hôpital du Chesnay, CH Andre 

Mignot du Chesnay, Maladies Infectieuses et Tropicales 
-  Emmanuel MORTIER, Martine BLOCH, Anne-Marie SIMONPOLI, Véronique MANCERON, 

Isabelle CAHITTE, Emmanuel HIRAUX, Erik LAFON, François CORDONNIER ? Ai-feng ZENG, 
Hôpital Louis Mourier de Colombes, Médecine Interne 

-  David ZUCMAN, Catherine MAJERHOLC, Dominique BORNAREL, Hôpital Foch de Suresnes , 
Médecine Interne 

-  Agnès ULUDAG, Justine GELLEN-DAUTREMER, Agnès LEFORT, Christine BAZIN, Hôpital 
Beaujon de Clichy, Médecine Interne 

-  Vincent DANELUZZI, Juliette GERBE, Centre Hospitalier de Nanterre, Service de Médecine 
Interne 

-  Vincent JEANTILS, Mélissa COUPARD, Hôpital Jean Verdier de Bondy, Service de Médecine 
Interne, Unité de Maladies Infectieuses 

-  Olivier PATEY, Jonas BANTSIMBA, Sophie DELLLION, Pauline CARAUX PAZ, Benoit 
CAZENAVE, Laurent RICHIER, Centre Hospitalier Intercommunal de Villeneuve St Georges, 
Médecine Interne 

-  Valérie GARRAIT, Isabelle DELACROIX, Brigitte ELHARRAR, Laurent RICHIER, Centre 
Hospitalier Intercommunal de Créteil, Médecine Interne, Hépato-Gastroentérologie 

-  Daniel VITTECOQ, Claudine BOLLIOT, Hôpital de Bicêtre, Service de Maladies Infectieuses et 
Tropicales 

-  Annie LEPRETRE, Hôpital Simone Veil d’Eaubonne, Médecine 2, Consultation ESCALE 
-  Philippe GENET, Virginie MASSE, Juliette GERBE, Consultation d’Immuno/Hématologie 

d’Argenteuil 
-  Véronique PERRONE, Centre Hospitalier François Quesnay de Mantes La Jolie, Service des 

Maladies Infectieuses 
-  Jean-Luc BOUSSARD, Patricia CHARDON, Centre Hospitalier Marc Jacquet de Melun, Service 

de Médecine 
-  Eric FROGUEL, Philippe SIMON, Sylvie TASSI, Hôpital de Lagny, Service de Médecine Interne. 



 

 

Scientific Committee:  
Véronique AVETTAND FENOEL (Virologie, Necker, Paris), Francis BARIN (Virologie, Tours), 
Christine BOURGEOIS (INSERM U1184 IMVA, Bicêtre), Fanny CARDON (ANRS), Marie-Laure 
CHAIX (Virologie, Saint Louis, Paris), Antoine CHERET (Médecine Interne, Paris), Jean François 
DELFRAISSY (Médecine Interne, Paris), Asma ESSAT (INSERM U1018, Bicêtre), Hugues 
FISCHER (TRT5), Cécile GOUJARD (Médecine Interne, Bicêtre), Caroline LASCOUX-COMBE 
(Médecine, Saint Louis, Paris), Camille LECUROUX (INSERM U1184 IMVA, Bicêtre), Laurence 
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